Skip to main content
Log in

Using multi-source data and decision tree classification in mapping vegetation diversity

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study acknowledges the problem of land cover demarcation in diverse vegetation condition. The Normalized Difference Vegetation Index is used for the preparation of base map. Further identification of mix and incorrect classes was done using ground truth. Radar data in combination with optical indices are used. In different NDVI classes, σ°RV with additional criteria on Normalized Difference Water Index successfully demarcated waterlogged area, polarization ratio σ°RV/σ°RH and backscattering coefficient σ°RH are found suitable to separate bare land from dry grass land, sparse and dense scrub could be separated by − (σ°RV + σ°RH)/2 and NDVI is efficient to identify dense vegetation. The study area is taken as Keoladeo National Park in Bharatpur, India. Statistical similarity between ground truth and classified class has been assessed using Jaccard coefficient (JC), Jaccard distance (JD), Dice coefficient (DC) and F-score. High similarity values of JC, JD, DC and F-score are achieved for all land cover types except bare land. Although, dry grassland showed low value of F-score; the reason could be low precision of class. The overall accuracy (87.17%), producer’s accuracy (86.39%), user’s accuracy (85.81%) and Kappa Coefficient (0.84) are also utilized to analyze performance of classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shougeng, H., & Le, W. (2012). Automated urban land-use classification with remote sensing. International Journal of Remote Sensing, 34(3), 790–803.

    Google Scholar 

  2. Qixia, M., Pinliang, D., & Huadong, G. (2015). Pixel- and feature-level fusion of hyperspectral and LIDAR data for urban land-use classification. International Journal of Remote Sensing, 36(6), 1618–1644.

    Article  Google Scholar 

  3. Kumar, P., Prasad, R., Choudhary, A., Mishra, V. N., Gupta, D. K., & Srivastava, P. K. (2016). A statistical significance of differences in classification accuracy of crop types using different classification algorithms. Geocarto International, 32(2), 206–224.

    Google Scholar 

  4. Kumar, P., Gupta, D. K., Mishra, V. N., & Prasad, R. (2015). Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. International Journal of Remote Sensing, 36(6), 1604–1617.

    Article  Google Scholar 

  5. Shukla, G., Garg, R. D., Srivastava, H. S., & Garg, P. K. (2018). An effective implementation and assessment of a random forest classifier as a soil spatial predictive model. International Journal of Remote Sensing, 39(8), 2637–2669.

    Article  Google Scholar 

  6. Shukla, G., Garg, R. D., Srivastava, H. S., & Garg, P. K. (2017). Implementation of random forest algorithm for crop prediction across an aridic to ustic area of Indian states. Journal of Applied Remote Sensing, 11(2), 026005.

    Article  Google Scholar 

  7. Shukla, G., Garg, R. D., Srivastava, H. S., & Garg, P. K. (2016). Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states. Geocarto International, 33(3), 240–259.

    Article  Google Scholar 

  8. Trisurat, Y., Eiumnoh, A., Murai, S., Hussain, M. Z., & Shrestha, R. P. (2010). Improvement of tropical vegetation mapping using a remote sensing technique: A case of Khao Yai National Park. Thailand. International Journal of Remote Sensing, 21(10), 2031–2042.

    Article  Google Scholar 

  9. Porwal, M. C., Roy, P. S., & Chellamuthu, V. (2007). Wildlife habitat analysis for ‘sambar’ (Cervus unicolor) in Kanha National Park using remote sensing. International Journal of Remote Sensing, 17(14), 2683–2697.

    Article  Google Scholar 

  10. Schweizer, D., Armstrong, R. A., & Posada, J. (2007). Remote sensing characterization of benthic habitats and submerged vegetation biomass in Los Roques Archipelago National Park. Venezuela. International Journal of Remote Sensing, 26(12), 2657–2667.

    Article  Google Scholar 

  11. Chamignon, C., & Manière, R. (2007). Forest cover type mapping and damage assessment of Zeiraphira diniana by SPOT 1 HRV data in the Mercantour National Park. International Journal of Remote Sensing, 11(8), 1439–1450.

    Article  Google Scholar 

  12. Adhikari, S., Southworth, J., & Nagendra, H. (2014). Understanding forest loss and recovery: a spatiotemporal analysis of land change in and around Bannerghatta National Park, India. Journal of Land Use Science, 10(4), 402–424.

    Article  Google Scholar 

  13. Ulaby, F. T., Bradley, G. A., & Obson, M. C. (1979). Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II–vegetation-covered soil. IEEE Transactions on Geoscience and Remote Sensing, 17(2), 33–40.

    Google Scholar 

  14. Ulaby, F. T., Razani, M., & Dobson, M. C. (1983). Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Transactions on Geoscience and Remote Sensing, GE-21(1), 51–61.

    Article  Google Scholar 

  15. Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on forest floor. Ecology, 50(4), 663–666.

    Article  Google Scholar 

  16. Huete, A. R., Justice, C., & van Leeuwen, W. (1996). MODIS vegetation index (MOD13). Algorithm theoretical basis document. http://www.ctahr.hawaii.edu/grem/mod13ug/sect0001.html. Accessed 26 July 2015.

  17. Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451.

    Article  Google Scholar 

  18. Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.

    Article  Google Scholar 

  19. Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282.

    Article  Google Scholar 

  20. Dash, J., & Curran, P. J. (2004). The MERIS Terrestrial Chlorophyll Index. International Journal of Remote Sensing, 25(23), 5403–5413.

    Article  Google Scholar 

  21. Rouse, J. W., Haas, R. H., Jr., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS-1 symposium NASA, 10–14 December 1973, Washington, D.C. (pp. 309–317).

  22. Deschamps, B., McNairn, H., Shang, J., & Jiao, X. (2012). Towards operational radar-only crop type classification: comparison of a traditional decision tree with a random forest classifier. Canadian Journal of Remote Sensing, 38(1), 60–68.

    Article  Google Scholar 

  23. Beltran, C. M., & Belmonte, A. C. (2001). Irrigated crop area estimation using Landsat TM imagery in La Mancha, Spain. Photogrammetric Engineering & Remote Sensing, 67(10), 1177–1184.

    Google Scholar 

  24. Sarkar, A., Majumdar, A., Chatterjee, S., Chatterjee, D., Ray, S. S., & Kartikeyan, B. (2008). Study of the potential of alternative crops by integration of multisource data using a Neuro-fuzzy technique. International Journal of Remote Sensing, 29, 5479–5493.

    Article  Google Scholar 

  25. Kumari, M., Kumar, V., & Saha, S. K. (2015). C-band RISAT-1 data for crop growth assessment of rice. Asian Journal of Geoinformatics., 15(1), 9–14.

    Google Scholar 

  26. Long, J., Lawrence, R., Greenwood, M. C., Marshall, L., & Miller, P. R. (2013). Object-oriented crop classification using multitemporal ETM + SLC-off imagery and Random Forest. GIScience and Remote Sensing, 50(4), 418–436.

    Article  Google Scholar 

  27. Tan, C. P., Ewe, T. H., & Chuah, H. T. (2011). Agricultural crop-type classification of multi-polarization SAR images using a hybrid entropy decomposition and Support Vector Machine technique. International Journal of Remote Sensing, 32(22), 7057–7071.

    Article  Google Scholar 

  28. Bocco, M., Sayago, S., & Willington, E. (2014). Neural network and crop residue index multiband models for estimating crop residue cover from Landsat TM and ETM+ images. International Journal of Remote Sensing, 35(10), 3651–3663.

    Article  Google Scholar 

  29. Toan, L. T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 403–411.

    Article  Google Scholar 

  30. Verhoest, N. E. C., Lievens, H., Wagner, W., Álvarez-Mozos, J., Moran, M. S., & Mattia, F. (2008). Soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors, 8(7), 4213–4248.

    Article  Google Scholar 

  31. Huang, W., Sun, G., Ni, W., Zhang, Z., & Dubayah, R. (2015). Sensitivity of multi-source SAR backscatter to changes in forest aboveground biomass. Remote Sensing, 7(8), 9587–9609.

    Article  Google Scholar 

  32. Sang, H., Zhang, J., Lin, H., & Zhai, L. (2014). Multi-polarization ASAR backscattering from herbaceous wetlands in Poyang Lake Region, China. Remote Sensing, 6(5), 4621–4646.

    Article  Google Scholar 

  33. Li, P., Jiang, L., & Feng, Z. (2014). Cross-comparison of vegetation indices derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 operational land imager (OLI) sensors. Remote Sensing, 6, 310–329.

    Article  Google Scholar 

  34. Ippoliti-Ramilo, G. A., Epiphanio, J. C. N., & Shimabukuro, Y. E. (2003). Landsat-5 Thematic Mapper data for pre-planting crop area evaluation in tropical countries. International Journal of Remote Sensing, 24(7), 1521–1534.

    Article  Google Scholar 

  35. Seto, K. C., & Kaufmann, R. K. (2005). Using logit models to classify land cover and land-cover change from Landsat Thematic Mapper. International Journal of Remote Sensing, 26(3), 563–577.

    Article  Google Scholar 

  36. Alrababah, M. A., & Alhamad, M. N. (2006). Land use/cover classification of arid and semi-arid mediterranean landscapes using Landsat ETM. International Journal of Remote Sensing, 27(13), 2703–2718.

    Article  Google Scholar 

  37. Fan, C., Zheng, S. W., & Aggarwal, R. (2014). Characterizing changes in cropping patterns using sequential Landsat imagery: An adaptive threshold approach and application to Phoenix, Arizona. International Journal of Remote Sensing, 35(20), 7263–7278.

    Article  Google Scholar 

  38. USGS Landsat-8. (2016). Product Guide-Using the USGS Landsat 8 Product; Resource document USGS. https://landsat.usgs.gov/using-usgs-landsat-8-product. Accessed 25 June 2014.

  39. Chávez, P. S. J. (1996). Image-based atmospheric corrections-revisited and improved. Photogrammetric Engineering & Remote Sensing, 62, 1025–1036.

    Google Scholar 

  40. Roderick, M., Smith, R. C. G., & Ludwick, G. (1996). Calibrating long term AVHRR derived NDVI imagery. Remote Sensing of Environment, 58(1), 1–12.

    Article  Google Scholar 

  41. Hong, S. K., Nakagoshi, N., Fu, B., & Morimoto, Y. (2008). Landscape ecological application in man-influenced areas-linking man and nature systems (p. 523). New York: Springer.

    Google Scholar 

  42. Middleton, B. A. (2009). Vegetation status of the Keoladeo National Park, Bharatpur, Rajasthan, India. http://pubs.usgs.gov/sir/2009/5193/pdf/SIR2009-5193.pdf. Accessed 26 July 2015.

  43. Gao, B. C. (1996). NDWI a normalized difference water index for remote sensing of vegetation liquid water from Space. Remote Sensing of Environment, 58(3), 257–266.

    Article  Google Scholar 

  44. Maycira, P. F. C., & Kevin, H. T. (2006). Utilizing SAR imagery and aquatic vegetation to map fresh and brackish lakes in the Brazilian Pantanal wetland. Remote Sensing of Environment, 105(3), 204–213.

    Article  Google Scholar 

  45. Silva, T. S. F., Costa, M. P. F., Melack, J. M., & Novo, E. M. L. M. (2008). Remote sensing of aquatic vegetation: Theory and applications. Environmental. Monitoring Assessment, 140(3), 131–145.

    Article  Google Scholar 

  46. Santoro, M., Eriksson, L., Askne, J., & Schmullius, C. (2006). Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscattering. International Journal of Remote Sensing, 27(16), 3425–3454.

    Article  Google Scholar 

  47. Lonnqvist, A., Rauste, Y., Molinier, M., & Hame, T. (2010). Polarimetric SAR data in land cover mapping in Boreal Zone. IEEE Transactions on Geoscience and Remote Sensing, 48(10), 3652–3662.

    Article  Google Scholar 

  48. Lehmann, E., Zhou, Z. S., Caccetta, P., Mitchell, A., Itchell Milne, A., Lowell, K., & Mcneill, S. (2011). Combined analysis of optical and SAR remote sensing data for forest mapping and monitoring. In 7th international symposium on digital earth, 23–25 August 2011, Perth, Australia (pp. 23–25).

Download references

Acknowledgements

The authors are grateful to Keoladeo National Park Authority for providing block and species information and to Director, Keoladeo National Park for providing permission for samples collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, G., Garg, R.D., Kumar, P. et al. Using multi-source data and decision tree classification in mapping vegetation diversity. Spat. Inf. Res. 26, 573–585 (2018). https://doi.org/10.1007/s41324-018-0200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0200-4

Keywords

Navigation