Skip to main content

Advertisement

Log in

Geometrical Characteristics of a 50th Anthropometric Head Finite Element Model: Literature Review

  • Original Paper
  • Published:
Human Factors and Mechanical Engineering for Defense and Safety Aims and scope Submit manuscript

Abstract

Military forces are confronted with an increasing threat of small caliber rounds and fragments (HE projectile, IEDs, etc.) in current operational theatres. This had led to the development of adapted body armour solutions. But, these solutions when impacted may lead to head blunt injuries (behind helmet blunt trauma (BHBT)) that can be severe, even fatal. Apart from the conventional missions, military forces are more and more called to intervene in homeland or abroad in policing missions in which the Kinetic Energy Non-Lethal Weapon (KENLW) solutions are widely used to avoid severe injuries to the targeted people. In both cases, there is a need to make an injury risk assessment in order to prevent or avoid severe or life-threatening injuries. For that purpose, one of the tools that are used is head biofidelic finite element models. The first step in developing a head model is to generate the head geometry. Most of the developed head models are based on the geometry of one specific subject derived from MRI or CT imaging, and the baseline model that is generally considered is the 50th percentile adult male corresponding to an average adult male. Therefore, it is important before any modelling to gather information on the human head characteristics like organ’s size and shape. The basic geometric characteristics that are mostly taken into account to build the models are the head external dimensions. In this paper, the goal is to gather information on head organs of an average adult male by taking into account not only the external dimensions but also mean geometric characteristics of the head (size of different head organs, skull thickness, etc.) in order to build an averaged geometry of the head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. War surgery: working with limited resources in armed conflict and other situations of violence, volume 2, ICRC, 2015

  2. Cannon L (2001) Behind armour blunt trauma-an emerging problem. J R Army Med Corps 147(1):87–96. https://doi.org/10.1136/jramc-147-01-09

    Article  Google Scholar 

  3. Mahajna A, Aboud N, Harbaji I (2002) Blunt and penetrating injuries caused by rubber bullets during the Israeli-Arab conflict in October, 2000: a retrospective study. Lancet 359:1795–1800

    Article  Google Scholar 

  4. Hiss J, Hellman FN, Kahana T (1997) Rubber and plastic ammunition lethal injuries: the Israeli experience. Medical Science Law 37(2):139–144

    Article  Google Scholar 

  5. Aare M, Kleiven S (2007) Evaluation of head response to ballistic helmet impacts using the finite element method. Int. J. Impact Eng 34(3):596–608. https://doi.org/10.1016/j.ijimpeng.2005.08.001

    Article  Google Scholar 

  6. Hubbs K and Klinger D. 2004 Impact munitions data base of use and effects. Technical Report 204433, U.S. Department of Justice

  7. Suyama J, Panagos PD, Sztajnkrycer MD et al (2003) Injury patterns related to use of less-lethal weapons during a period of civil unrest. J Emerg Med 25(2):219–227

    Article  Google Scholar 

  8. Oukara A, Nsiampa N, Robbe C, Papy A (2014) Injury risk assessment of non-lethal projectile head impacts. Open Biomed Eng J 8:75–83. https://doi.org/10.2174/1874120701408010075

    Article  Google Scholar 

  9. NATO, Head injuries assessment of non-lethal projectiles, in AEP-103. 15 July 2021, Allied Engineering.

  10. NATO, Thorax injury risk assessment of non-lethal projectiles, in AEP-99. 15 July 2021, Allied Engineering.

  11. Gordon CC, Churchil T, Clauser CE, Bradtmiller B, McConville JT, Tebbetts I, Walker RA. 1988 anthropometric survey of U.S. Army personnel: summary statistics interim report, technical report. Natick

  12. Gordon CC, Blackwell CL, Bradtmiller B, Parham JL, Barrientos P, Paquette SP, Mucher M (2014). 2012 anthropometric survey of U.S. Army personnel: methods and summary statistics (No. NATICK/TR-15/007). U.S. Army Natick Soldier Research, Development and Engineering Center.

  13. Schneider LW, Robbins DH, Pflüg MA and Snyder RG. Development of anthropometrically based design specifications for an advanced adult anthropomorphic dummy family. Final report, UMTRI-83-53-1; University of Michigan Transportation Research Institute; (1983) Ann Arbor. Michigan, USA

    Google Scholar 

  14. Robbins DH. Anthropometric specifications for mid-sized male dummy. Final report, UMTRI-83-53-2; University of Michigan Transportation Research Institute; (1983) Ann Arbor. Michigan, USA

    Google Scholar 

  15. Gayzik FS, Moreno DP, Geer CP, Wuertzer SD, Martin RS, Stitzel JD (2011) Development of a full body CAD dataset for computational modelling: a multi-modality approach. Ann Biomed Eng 39(10):2568–2583

    Article  Google Scholar 

  16. Iwamoto M, Nakahira Y, Kimpara H (2015) Development and validation of the Total HUman Model for Safety (THUMS) toward further understanding of occupant injury mechanisms in precrash and during crash. Traffic Inj Prev 16(Suppl 1):S36-48. https://doi.org/10.1080/15389588.2015.1015000

    Article  Google Scholar 

  17. Willinger R, Baumgartner D (2003) Human head tolerance limits to specific injury mechanisms. Int J Crashworthiness 8:605–617. https://doi.org/10.1533/ijcr.2003.0264

    Article  MATH  Google Scholar 

  18. Roth et al (2013) Anthropometric dependence of the response of a thorax FE model under high speed loading: validation and real world accident replication. Comput Methods Programs Biomed 110(2):160–170

    Article  Google Scholar 

  19. Kleiven S, von Holst H (2002) Consequences of head size following trauma to the human head. J Biomech 35(2):153–160. https://doi.org/10.1016/s0021-9290(01)00202-0

    Article  Google Scholar 

  20. Ruan J, El-Jawahri R, Chai L, Barbat S, Prasad P (2003) Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model. Stapp Car Crash J 47:299–321

    Google Scholar 

  21. Davis ML, Koya B, Schap JM, Gayzik FS (2016) Development and full body validation of a 5th percentile female finite element model. Stapp Car Crash J 60:509–544

    Google Scholar 

  22. Pak W, Untaroiu CD (2016). International LS-DYNA Users Conference session: occupant safety 1–1 development and validation of a 95th percentile male pedestrian finite element model.

  23. Vavalle NA, Schoell SL, Weaver AA, Stitzel JD, Gayzik FS (2014) Application of radial basis function methods in the development of a 95th percentile male seated FEA model. Stapp Car Crash J 58:361–384

    Google Scholar 

  24. Untaroiu CD et al (2008) A study of the pedestrian impact kinematics using finite element dummy models: the corridors and dimensional analysis scaling of upper-body trajectories. Int J Crashworthiness 13:469–478

    Article  Google Scholar 

  25. Zhang L, Yang KH, Dwarampudi R et al (2001) Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash Journal 45:369

    Google Scholar 

  26. Claessens MHA. 1994 Anatomical description of the human head. DCT rapporten. Technische Universiteit Eindhoven WFW 1994 003

  27. Baucher G, Bernard F, Graillon T, Dufour H (2019) Interfascial approach for pterional craniotomy: technique and adjustments to prevent cosmetic complications. Acta Neurochir (Wien) 161(11):2353–2357. https://doi.org/10.1007/s00701-019-04058-1

    Article  Google Scholar 

  28. Davidge KM, van Furth WR, Agur A, Cusimano M (2010) Naming the soft tissue layers of the temporoparietal region: unifying anatomic terminology across surgical disciplines. Neurosurgery 67(3 Suppl Operative):ons120-9 discussion ons129-30. https://doi.org/10.1227/01.NEU.0000383132.34056.61

    Article  Google Scholar 

  29. Marieb, E. (2006) Essentials of human anatomy and physiology. Benjamin Cummings

  30. Starkey J, Young J, Horn W, Sobkow W et al., 1969 The first standard automotive crash dummy. SAE Technical Paper 690218, https://doi.org/10.4271/690218

  31. SAE. Anthropomorphic test devices for dynamic testing — SAE J963, SAE Recommended Practice, Society of Automotive Engineers Handbook, 1972.

  32. Hubbard R and McLeod D., Definition and development of a crash dummy head. SAE Technical Paper 741193, 1974, https://doi.org/10.4271/741193.

  33. Clauser CE, McConville JT and Young JW (1969) Weight, volume, and center of mass of segments of the human body. AMRL Technical Report 69–70. Wright-Patterson Air Force Base, Ohio. (NTIS No. AD-710–622.)

  34. Yoganandan N, Pintar FA, Zhang J, Baisden JL (2009) Physical properties of the human head: mass, center of gravity and moment of inertia. J Biomech 42(9):1177–1192. https://doi.org/10.1016/j.jbiomech.2009.03.029

    Article  Google Scholar 

  35. Walker L, Harris E, and Pontius U. Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body. SAE Technical Paper 730985, 1973, https://doi.org/10.4271/730985.

  36. Kruggel F (2006 Mar) MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 30(1):1–11. https://doi.org/10.1016/j.neuroimage.2005.09.063

    Article  Google Scholar 

  37. Rushton JP, Ankney CD (2009) Whole brain size and general mental ability: a review. Int J Neurosci 119(5):691–731. https://doi.org/10.1080/00207450802325843

    Article  Google Scholar 

  38. Rushton JP (1991) Mongoloid-Caucasoid differences in brain size from military samples. Intelligence 15(3):351–359. https://doi.org/10.1016/0160-2896(91)90043-D

    Article  Google Scholar 

  39. Blatter DD, Bigler ED, Gale SD, Johnson SC, Anderson CV, Burnett BM, Parker N, Kurth S, Horn SD (1995) Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. Am J Neuroradiol 16:241–251

    Google Scholar 

  40. Reite M, Reite E, Collins D et al (2010) Brain size and brain/intracranial volume ratio in major mental illness. BMC Psychiatry 10:79. https://doi.org/10.1186/1471-244X-10-79

    Article  Google Scholar 

  41. Hoogendam YY, van der Geest JN, van der Lijn F et al (2012) Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging 33(12):2774–2781. https://doi.org/10.1016/j.neurobiolaging.2012.02.012

    Article  Google Scholar 

  42. Mortamet B, Zeng D, Gerig G, Prastawa M, Bullitt E (2005) Effects of healthy aging measured by intracranial compartment volumes using a designed MR brain database. Med Image Comput Comput Assist Interv 8(Pt 1):383–391. https://doi.org/10.1007/11566465_48

    Article  Google Scholar 

  43. Nopoulos P, Flaum M, O’Leary D, Andreasen NC (2000) Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res 98(1):1–13. https://doi.org/10.1016/s0925-4927(99)00044-x

    Article  Google Scholar 

  44. Lüders E, Steinmetz H, Jäncke L (2002) Brain size and grey matter volume in the healthy human brain. NeuroReport 13(17):2371–2374. https://doi.org/10.1097/01.wnr.0000049603.85580.da

    Article  Google Scholar 

  45. Tanskanen P, Haapea M, Veijola J, Miettunen J, Jarvelin MR, Pyhtinen J et al (2009) Volumes of brain, grey and white matter and cerebrospinal fluid in schizophrenia in the Northern Finland 1966 Birth Cohort: an epidemiological approach to analysis. Psychiatry Res 174:116–120

    Article  Google Scholar 

  46. Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N (2002) Effects of age on brain volume and head circumference in autism. Neurology 59(2):175–183. https://doi.org/10.1212/wnl.59.2.175

    Article  Google Scholar 

  47. Goldstein JM, Seidman LJ, Horton NJ et al (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11(6):490–497. https://doi.org/10.1093/cercor/11.6.490

    Article  Google Scholar 

  48. Aylward EH, Habbak R, Warren AC et al (1997) Cerebellar volume in adults with Down syndrome. Arch Neurol 54(2):209–212. https://doi.org/10.1001/archneur.1997.00550140077016

    Article  Google Scholar 

  49. Luft AR, Skalej M, Schulz JB, Welte D, Kolb R, Bürk K, Klockgether T, Voight K (1999) Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex 9(7):712–21. https://doi.org/10.1093/cercor/9.7.712

    Article  Google Scholar 

  50. Eichler L, Bellenberg B, Hahn HK, Köster O, Schöls L, Lukas C (2011) Quantitative assessment of brain stem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6: impact on clinical status. AJNR Am J Neuroradiol 32(5):890–897. https://doi.org/10.3174/ajnr.A2387

    Article  Google Scholar 

  51. Erbagci H, Keser M, Kervancioglu S, Kizilkan N (2012) Estimation of the brain stem volume by stereological method on magnetic resonance imaging. Surg Radiol Anat 34(9):819–824. https://doi.org/10.1007/s00276-012-0966-3

    Article  Google Scholar 

  52. Koehler PR, Haughton VM, Daniels DL, Williams AL, Yetkin Z, Charles HC, Shutts D (1985) MR measurement of normal and pathologic brainstem diameters. AJNR Am J Neuroradiol 6(3):425–7

    Google Scholar 

  53. Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118(4):341–358. https://doi.org/10.1002/ajpa.10092

    Article  Google Scholar 

  54. Allen LS, Richey MF, Chai YM, Gorski RA (1991) Sex differences in the corpus callosum of the living human being. J Neurosci 11(4):933–942. https://doi.org/10.1523/JNEUROSCI.11-04-00933.1991

    Article  Google Scholar 

  55. Kucharsky Hiess R, Alter R, Sojoudi S, Ardekani BA, Kuzniecky R, Pardoe HR (2015) Corpus callosum area and brain volume in autism spectrum disorder: quantitative analysis of structural MRI from the ABIDE database. J Autism Dev Disord 45(10):3107–3114. https://doi.org/10.1007/s10803-015-2468-8

    Article  Google Scholar 

  56. Jäncke L, Staiger JF, Schlaug G, Huang Y, Steinmetz H (1997) The relationship between corpus callosum size and forebrain volume. Cereb Cortex 7(1):48–56. https://doi.org/10.1093/cercor/7.1.48

    Article  Google Scholar 

  57. Prigge MB, Lange N, Bigler ED et al (2013) Corpus callosum area in children and adults with autism. Res Autism Spectr Disord 7(2):221–234. https://doi.org/10.1016/j.rasd.2012.09.007

    Article  Google Scholar 

  58. Keary CJ, Minshew NJ, Bansal R, Goradia D, Fedorov S, Keshavan MS, Hardan AY (2009) Corpus callosum volume and neurocognition in autism. J Autism Dev Disord 39(6):834–841. https://doi.org/10.1007/s10803-009-0689-4

    Article  Google Scholar 

  59. Lefebvre A, Beggiato A, Bourgeron T, Toro R (2015) Neuroanatomical diversity of corpus callosum and brain volume in autism: meta-analysis, analysis of the Autism Brain Imaging Data Exchange project, and simulation. Biol Psychiatry 78(2):126–134. https://doi.org/10.1016/j.biopsych.2015.02.010

    Article  Google Scholar 

  60. Ruan J, Prasad P (2001) The effects of skull thickness variations on human head dynamic impact responses. Stapp Car Crash J 45:395–414

    Google Scholar 

  61. McElhaney JH, Fogle JL, Melvin JW, Haynes RR, Roberts VL, Alem NM (1970) Mechanical properties on cranial bone. J Biomech 3(5):495–511. https://doi.org/10.1016/0021-9290(70)90059-x

    Article  Google Scholar 

  62. Hodgson VR, Brinn J, Thomas LM, and Greenberg SW. Fracture behavior of the skull frontal bone against cylindrical surface. Proc. 14th Stapp Car Crash Conference, 1970; SAE Paper No. 700909.

  63. Peterson J, Dechow PC (2002) Material properties of the inner and outer cortical tables of the human parietal bone. Anat Rec 268(1):7–15. https://doi.org/10.1002/ar.10131

    Article  Google Scholar 

  64. Motherway JA, Verschueren P, Van der Perre G, Vander Sloten J, Gilchrist MD (2009) The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. J Biomech 42(13):2129–2135. https://doi.org/10.1016/j.jbiomech.2009.05.030

    Article  Google Scholar 

  65. Lee JHC, Ondruschka B, Falland-Cheung L, Scholze M, Hammer N, Tong DC, John JN. An investigation on the correlation between the mechanical properties of human skull bone, its geometry, microarchitectural properties, and water content. Journal of Healthcare Engineering, vol. 2019, Article ID 6515797, 8 pages, 2019. https://doi.org/10.1155/2019/6515797

  66. Todd TW (1924) Thickness of the male white cranium. Anat Rec 27:245–256

    Article  Google Scholar 

  67. Roche A (1953) Increase in cranial thickness during growth. Hum Biol 25:81–92

    Google Scholar 

  68. Ross MD, Lee KA, Castle WM (1976) Skull thickness of black and white races. S Afr Med J 50(16):635–638

    Google Scholar 

  69. Adeloye A, Kattan KR, Silverman FN (1975) Thickness of the normal skull in the American Blacks and Whites. Am J Phys Anthropol 43(1):23–30. https://doi.org/10.1002/ajpa.1330430105

    Article  Google Scholar 

  70. Lynnerup N (2001) Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci Int 117:45–51

    Article  Google Scholar 

  71. Lynnerup N, Astrup JG, Sejrsen B (2005) Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med 1:13

    Article  Google Scholar 

  72. Moreira-Gonzalez A, Papay FE, Zins JE (2006) Calvarial thickness and its relation to cranial bone harvest. Plast Reconstr Surg 117(6):1964–1971. https://doi.org/10.1097/01.prs.0000209933.78532.a7

    Article  Google Scholar 

  73. Albert AM, Ricanek K Jr, Patterson E (2007) A review of the literature on the aging adult skull and face: implications for forensic science research and applications. Forensic Sci Int 172(1):1–9. https://doi.org/10.1016/j.forsciint.2007.03.015

    Article  Google Scholar 

  74. Gupta S (2016) Brain food: clever eating. Nature 531:S12–S13

    Article  Google Scholar 

  75. Zwirner J, Safavi S, Scholze M et al (2021) Topographical mapping of the mechanical characteristics of the human neurocranium considering the role of individual layers. Sci Rep 11:3721. https://doi.org/10.1038/s41598-020-80548-y

    Article  Google Scholar 

  76. De Boer HH, Van der Merwe AE, Soerdjbalie-Maikoe VV (2016) Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med 130(5):1371–1377. https://doi.org/10.1007/s00414-016-1324-5

    Article  Google Scholar 

  77. Irene Del Olmo Lianes, Emiliano Bruner, Oscar Cambra-moo, María Molina Moreno, Armando González Martín. Cranial vault thickness measurement and distribution: a study with a magnetic caliper. 2019 Anthropological Science, Volume 127, Issue 1, Pages 47–54, https://doi.org/10.1537/ase.190306

  78. Sullivan WG, Smith AA (1989) The split calvarial graft donor site in the elderly: a study in cadavers. Plast Reconstr Surg 84(1):29–31. https://doi.org/10.1097/00006534-198907000-00006

    Article  Google Scholar 

  79. Hwang K, Hollinger JO, Chung RS, Lee SI (2000) Histomorphometry of parietal bones versus age and race. J Craniofac Surg 11(1):17–23. https://doi.org/10.1097/00001665-200011010-00004

    Article  Google Scholar 

  80. Hatipoglu HG, Ozcan HN, Hatipoglu US, Yuksel E (2008) Age, sex and body mass index in relation to calvarial diploe thickness and craniometric data on MRI. Forensic Sci Int 182(1–3):46–51. https://doi.org/10.1016/j.forsciint.2008.09.014

    Article  Google Scholar 

  81. Yoganandan N, Pintar FA, Sances A Jr, Walsh PR, Ewing CL, Thomas DJ, Snyder RG (1995) Biomechanics of skull fracture. J Neurotrauma 12(4):659–668. https://doi.org/10.1089/neu.1995.12.659

    Article  Google Scholar 

  82. De Kegel D, Meynen A, Famaey N, Harry van Lenthe G, Depreitere B, Sloten JV (2019) Skull fracture prediction through subject-specific finite element modelling is highly sensitive to model parameters. J Mech Behav Biomed Mater 100:103384. https://doi.org/10.1016/j.jmbbm.2019.103384

    Article  Google Scholar 

  83. Trotta A, Zouzias D, De Bruyne G, Ni Annaidh A (2018b) The importance of the scalp in head impact kinematics. Ann. Biomed. Eng 46(6):831–840. https://doi.org/10.1007/s10439-018-2003-0

    Article  Google Scholar 

  84. Zhang TG, Thompson KA, Satapathy SS (2018) (October 4, 2017). Effects of loading conditions and skull fracture on load transfer to head. ASME. ASME J. Risk Uncertainty Part B 4(2):021007. https://doi.org/10.1115/1.4037647

    Article  Google Scholar 

  85. Dannawi M, Robert R, Costiou P, and Jacquet JF. French work about medical and physical understanding of non-lethal projectiles head impacts, consciousness, coma and irreversible injury lesional thresholds research and the study of simple assessment method of non-lethal projectile. Unpublished internal reports from 2006 to 201 at DGA.

  86. Jacquet JF. 2010 Seuils de concussion, coma et endommagements irréversibles lors d’un impact crânien par projectiles cinétiques à létalité réduite. In 3rd congress of wound ballistics, Lyon, France

  87. Oldendorf WH, Iisaka Y (1969) Interference of scalp and skull with external measurements of brain isotope content. 1. Isotope content of scalp and skull. J Nucl Med 10(4):177–183

    Google Scholar 

  88. Young RW (1959) Age changes in the thickness of the scalp in white males. Hum Biol 31(1):74–79

    Google Scholar 

  89. Haeussinger FB, Heinzel S, Hahn T, Schecklmann M, Ehlis AC, Fallgatter AJ (2011) Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging. PLoS ONE 6(10):e26377. https://doi.org/10.1371/journal.pone.0026377

    Article  Google Scholar 

  90. Mylanus EA, Snik AF, Cremers CW (1994) Influence of the thickness of the skin and subcutaneous tissue covering the mastoid on bone-conduction thresholds obtained transcutaneously versus percutaneously. Scand Audiol 23(3):201–203. https://doi.org/10.3109/01050399409047509

    Article  Google Scholar 

  91. Lupin AJ, Gardiner RJ (2001) Scalp thickness in the temporal region: its relevance to the development of cochlear implants. Cochlear Implants Int 2(1):30–38. https://doi.org/10.1179/cim.2001.2.1.30

    Article  Google Scholar 

  92. Raine CH, Lee CA, Strachan DR, Totten CT, Khan S (2007) Skin flap thickness in cochlear implant patients - a prospective study. Cochlear Implants Int 8(3):148–157. https://doi.org/10.1179/cim.2007.8.3.148

    Article  Google Scholar 

  93. Fernandes F.A.O., Alves de Sousa R.J., Ptak M. (2018) Finite element head modelling and head injury predictors. In: Head injury simulation in road traffic accidents. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89926-8_1

  94. Yang B, Tse KM, Chen N, Tan LB, Zheng QQ, Yang HM, Hu M, Pan G, Lee HP (2014) Development of a finite element head model for the study of impact head injury. Biomed Res Int 2014:408278. https://doi.org/10.1155/2014/408278

    Article  Google Scholar 

  95. Voo L, Kumaresan S, Pintar FA et al (1996) Finite-element models of the human head. Med Biol Eng Comput 34:375–381. https://doi.org/10.1007/BF02520009

    Article  Google Scholar 

  96. Samaka HM, Tarlochan F (2013) Finite element (FE) human head models / literature review. Int J Sci Technol Res 2:17–31

    Google Scholar 

  97. Raul JS, Deck C, Willinger R, Ludes B (2008) Finite-element models of the human head and their applications in forensic practice. Int J Legal Med 122(5):359–366

    Article  Google Scholar 

  98. Total Human Model for Safety (THUMS) documentation, AM50 Pedestrian Model Version 4.02, Toyota Motor Corporation, January 2021.

  99. Global Human Body Models Consortium (GHBMC), User manual: M50 detailed occupant, version 4.5 for LS-Dyna, October 12, 2016, Document Revision 5.1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nsiampa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsiampa, N., Robbe, C. & Papy, A. Geometrical Characteristics of a 50th Anthropometric Head Finite Element Model: Literature Review. Hum Factors Mech Eng Def Saf 6, 8 (2022). https://doi.org/10.1007/s41314-022-00043-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41314-022-00043-2

Keywords

Navigation