Skip to main content

Advertisement

Log in

Green synthesis of silver nanoparticles from Euphorbia and its biological activities

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Nanotechnology is important in all fields of science. Silver nanoparticles, among the many metal nanoparticles, play an essential role in a wide range of applications in diverse fields. Nanoparticles are created using a variety of physical and chemical approaches. Synthesis utilising plant extracts, on the other hand, appears to be more important because it avoids the drawbacks of traditional procedures, such as time-consuming, high-energy needs, and the use of dangerous chemicals. Plant extract-based silver nanoparticle synthesis is usually eco-friendly, environmentally benign, low-cost, and readily scaled up for large-scale synthesis, and it is always preferable due to its advantages over other conventional approaches. Euphorbia plants are therapeutic as well as pharmacologically important. They contain a variety of phytoconstituents with a wide range of possible bioactivities and functional groups. Proper awareness of the participation of phytometabolites during the creation of nanoparticles is highly advised for better nanotechnology advancements. Previous research on the Euphorbia genus indicated phytoconstituents’ potential applications in a variety of disciplines. Due to the scarcity of research in this subject, the manufacture of silver nanoparticles and subsequent analysis of the role of phytometabolites will be extremely beneficial. The utilisation of several extracts from different Euphorbia plant species for the green production of silver nanoparticles is discussed here. Different phytochemicals involved in the nanoparticles’ synthetic mechanism and phytoconstituents that act as stabilising, capping agents during nanoparticle production are also described. The bioactivities of the produced silver nanoparticles varied, with antibacterial characteristics being the most important. In this review, the antifungal, antiparasitic, nematicidal, anticancer, anti-inflammatory, antiplasmodial, antioxidant, and larvicidal capabilities of biosynthesised silver nanoparticles are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ruddaraju LK, Pammi SVN, Sankar Guntuku G, Padavala VS, Kolapalli VRM (2020) A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci 15(1):42–59

    Article  Google Scholar 

  2. Natsuki J, Natsuki T, Hashimoto Y (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 4(5):325–332

    Google Scholar 

  3. Almatroudi A (2020) Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci 15(1):819–839

    Article  Google Scholar 

  4. Stephen S, Thomas T (2020) A review on green synthesis of silver nanoparticles by employing plants of acanthaceae and its bioactivities. Nanomed Res J 5(3):215–224

    Google Scholar 

  5. Dawadi S, Katuwal S, Gupta A, Lamichhane U, Thapa R, Jaisi S, & Parajuli N (2021) Current research on silver nanoparticles: Synthesis, characterization, and applications. J. Nanomater. 2021.

  6. Schaming D, Remita H (2015) Nanotechnology: from the ancient time to nowadays. Found Chem 17(3):187–205

    Article  Google Scholar 

  7. Ip M, Lui SL, Poon VK, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55(1):59–63

    Article  Google Scholar 

  8. Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation-induced silver nanoparticles as mosquito larvicides. J Appl Sci 10(23):3132–3136

    Article  Google Scholar 

  9. Gopal J, Abdelhamid HN, Huang JH, Wu HF (2016) Nondestructive detection of the freshness of fruits and vegetables using gold and silver nanoparticle mediated graphene enhanced Raman spectroscopy. Sens Actuators B Chem 224:413–424

    Article  Google Scholar 

  10. Abd El-Moneim D, Dawood MF, Moursi YS, Farghaly AA, Afifi M, Sallam A (2021) Positive and negative effects of nanoparticles on agricultural crops. Nanotechnol Environ Eng 6(2):1–11

    Google Scholar 

  11. Jadoun S, Arif R, Jangid NK, Meena RK (2020) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19(1):355–374

    Google Scholar 

  12. Godwin MA, Shri KM, Balaji M (2015) Nanoparticles and their applications-A mini review. Int J Res Eng Biosci 3(5):11–29

    Google Scholar 

  13. Ghiuţă I, Cristea D, Munteanu D (2017) Synthesis methods of metallic nanoparticles-an overview Bulletin of the Transilvania University of Brasov. Eng Sci Ser I 10(2):133–140

    Google Scholar 

  14. Modan EM, & PlaiasuL AG (2020) Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, J. Metall. Mater. Sci 43(1), 53–60.

  15. Sarsar V, Selwal KK & Selwal MK (2014) Nanosilver: potent antimicrobial agent and its biosynthesis. Afr J Biotechnol 13(4):546–554

    Article  Google Scholar 

  16. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    Google Scholar 

  17. Yasmin K, Qasim NM, Muhammad N, & Ikram U (2018) Biomimetic synthesis of silver nanoparticles for breast cancer therapeutics and its mechanism. Int J Nanotechnol Nanomedicine 3:1–9

    Google Scholar 

  18. Krithiga N, Rajalakshmi A, Jayachitra A (2015) Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J Nanosci 2015:1–8

    Article  Google Scholar 

  19. Rath M, Pand SS, Dhal NK (2014) Synthesis of silver nano particles from plant extract and its application in cancer treatment: a review. Int J Plant Anim Environ Sci 4(3):137–145

    Google Scholar 

  20. Khabat V, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei. Insciences J 1(1):65–79

    Google Scholar 

  21. Ishida K, Cipriano TF, Rocha G, Weissmüller G, Gomes F, Miranda K, Rozental S (2013) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz 109:220–228

    Article  Google Scholar 

  22. Guilger-Casagrande M, Lima RD (2019) Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol 7:287

    Article  Google Scholar 

  23. Kannan N, Subbalaxmi S (2011) Green synthesis of silver nanoparticles using Bacillus subtilis IA751 and its antimicrobial activity. Res. J. Nanosci. Nanotechnology1 (2):87–94.

  24. Singh G, Kumar P (2013) Phytochemical study and screening for antimicrobial activity of flavonoids of Euphorbia hirta. Int j appl basic med 3(2):111

    Article  Google Scholar 

  25. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanoparticle Res 2011:2981–2988

    Article  Google Scholar 

  26. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostructures 5(2):483–489

    Google Scholar 

  27. Olabemiwo OM, Akintelu SA, Waheed AA, Okunlola DS, Akinwale DR, Adeyinka GC, Adebisi SA (2021) Green synthesis of silver nanoparticles using stem bark extract of Annona senegalensis: characterization and its antibacterial potency. CRGSC 4:100219

    Google Scholar 

  28. Sarip NA, Aminudin NI, Danial WH (2021) Green synthesis of metal nanoparticles using Garcinia extracts: a review. Environ Chem Lett 12:1–25.

    Google Scholar 

  29. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G (2018) Secondary metabolites in the green synthesis of metallic nanoparticles. Mater 11(6):940

    Article  Google Scholar 

  30. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology 16(1):1–24

    Article  Google Scholar 

  31. Latif MS, Abbas S, Kormin F, Mustafa MK (2019) Green synthesis of plant-mediated metal nanoparticles: the role of polyphenols. Asian J Pharm Clin Res 12(7):75–84

    Article  Google Scholar 

  32. Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep 7(1):1–13

    Article  Google Scholar 

  33. Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, Pandey RA (2016) Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett 6(3):173–181

    Article  Google Scholar 

  34. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия), 6(1 (20)).

  35. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5(3):69–78

    Article  Google Scholar 

  36. Liu YS, Chang YC, Chen HH (2018) Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. J Food Drug Anal 26(2):649–656

    Article  Google Scholar 

  37. Nahar L, Farghaly AA, Esteves RJA, Arachchige IU (2017) Shape controlled synthesis of Au/Ag/Pd nanoalloys and their oxidation-induced self-assembly into electrocatalytically active aerogel monoliths. Chem Mater 29(18):7704–7715

    Article  Google Scholar 

  38. Lade BD, Shanware AS (2020) Phytonanofabrication: methodology and factors affecting biosynthesis of nanoparticles. In: Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis IntechOpen.

  39. Gamboa SM, Rojas ER, Martínez VV, Vega-Baudrit J (2019) Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. Int J Biosen Bioelectron 5:166–173

    Google Scholar 

  40. Shastri L, Abdelhamid HN, Nawaz M, Wu HF (2015) Synthesis, characterization and bifunctional applications of bidentate silver nanoparticle assisted single drop microextraction as a highly sensitive preconcentrating probe for protein analysis. RSC Adv 5(52):41595–41603

    Article  Google Scholar 

  41. Abdelhamid HN, Wu HF (2014) Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation. Mater Sci Eng C 45:438–445

    Article  Google Scholar 

  42. Salehi B, Iriti M, Vitalini S, Antolak H, Pawlikowska E, Kręgiel D, Seca AM (2019) Euphorbia-derived natural products with potential for use in health maintenance. Biomolecules 9(8):337

    Article  Google Scholar 

  43. Kemboi D, Peter X, Langat M, Tembu J (2020) A review of the ethnomedicinal uses, biological activities, and triterpenoids of Euphorbia species. Molecules 25(17):4019

    Article  Google Scholar 

  44. Upadhyay B, Singh KP, Kumar A (2010) Ethno-Medicinal, Phytochemical and Antimicrobial Studies of Euphorbia tirucalli L. J Phytol 2(4):65–77

    Google Scholar 

  45. Fred-Jaiyesimi AA, Abo KA (2010) Phytochemical and antimicrobial analysis of the crude extract, petroleum ether and chloroform fractions of Euphorbia heterophylla Linn whole Plant. Pharmacogn J 2(16):1–4

    Article  Google Scholar 

  46. Nyeem MAB, Haque MS, Akramuzzaman M, Siddika R, Sultana S, Islam BR (2017) Euphorbia hirta Linn. A wonderful miracle plant of Mediterranean region: a review. J. Med. Plants Stud. 5(3):170–175

    Google Scholar 

  47. Shi QW, Su XH, Kiyota H (2008) Chemical and pharmacological research of the plants in genus Euphorbia. Chem Rev 108(10):4295–4327

    Article  Google Scholar 

  48. Seca AM, Pinto DC (2018) Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci 19(1):263

    Article  Google Scholar 

  49. Wang XY, Liu LP, Zhu RX, Kang TG, Tong LJ, Xie H, Wang HB (2011) Cytotoxic activities of some selected medicinal plants of the genus Euphorbia. J Med Plants Res 5(31):6766–6769

    Google Scholar 

  50. Betancur-Galvis LA, Morales GE, Forero JE, Roldan J (2002) Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Mem Inst Oswaldo Cruz 97(4):541–546

    Article  Google Scholar 

  51. Natarajan D, Britto S, Srinivasan K, Nagamurugan N, Mohanasundari C, Perumal G (2005) Anti-bacterial activity of Euphorbia fusiformis—A rare medicinal herb. J Ethnopharmacol 102(1):123–126

    Article  Google Scholar 

  52. Falodun A, Okunrobo LO, Uzoamaka N (2006) Phytochemical screening and anti-inflammatory evaluation of methanolic and aqueous extracts of Euphorbia heterophylla Linn. (Euphorbiaceae). Afr J Biotechnol 5(6):529–531

    Google Scholar 

  53. Saraf S, Dixit VK, Patnai GK, Tripathi SC (1995) Antihepatoxic activity of Euphorbia antisyphilitica. Indian J Pharm Sci 58(4):137–141

    Google Scholar 

  54. Ndam LM, Mih AM, Tening AS, Fongod AGN, Temenu NA, Fujii Y (2016) Phytochemical analysis, antimicrobial and antioxidant activities of Euphorbia golondrina LC Wheeler (Euphorbiaceae Juss.): an unexplored medicinal herb reported from Cameroon. Springerplus 5(1):1–15

    Article  Google Scholar 

  55. De Araújo KM, De Lima A, Silva JDN, Rodrigue LL, Amorim AG, Quelemes PV, Da Trindade RA (2014) Identification of phenolic compounds and evaluation of antioxidant and antimicrobial properties of Euphorbia tirucalli L. Antioxidants 3(1):159–175

    Article  Google Scholar 

  56. Magozwi DK, Dinala M, Mokwana N, Siwe-Noundou X, Krause RW, Sonopo M, Tembu VJ (2021) Flavonoids from the genus euphorbia: isolation, structure. Pharmacol Activit Struct-Activit Relat Pharmaceut 14(5):428

    Google Scholar 

  57. Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN (2016) Green synthesis of silver nanoparticles: a review. Green Sustain Chem 6(1):34–56

    Article  Google Scholar 

  58. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:1–8

    Article  Google Scholar 

  59. Padalia H, Moteriya P, Chanda S (2015) Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 8(5):732–741

    Article  Google Scholar 

  60. Khattak U, Ullah R, Khan SA, Jan SA, Rauf A, Ramadan MF (2019) Synthesis, characteristics and biological activities of silver nanoparticles from Euphorbia dracunculoides. EurAsian J BioSci 13(2):2249–2260

    Google Scholar 

  61. Sadeghipour Y, Alipour MH, Ghaderi Jafarbeigloo HR, Salahvarzi A, Mirzaii M, Amani AM, Mehrabi M (2020) Evaluation antibacterial activity of Biosynthesized Silver Nanoparticles by using extract of Euphorbia Pseudocactus Berger (Euphorbiaceae). Nanomed Res J 5(3):265–275

    Google Scholar 

  62. Banumathi B, Vaseeharan B, Chinnasamy T, Vijayakumar S, Govindarajan M, Alharbi NS, Benelli G (2017) Euphorbia rothiana-fabricated Ag nanoparticles showed high toxicity on Aedes aegypti larvae and growth inhibition on microbial pathogens: a focus on morphological changes in Mosquitoes and Antibiofilm potential against Bacteria. J Clust Sci 28(5):2857–2872

    Article  Google Scholar 

  63. Muchanyereyi NM, Muchenje T, Nyoni S, Shumba M, Mupa M (2017) Green synthesis of silver nanoparticles using Euphorbia confinalis stem extract, characterization and evaluation of antimicrobial activity. J Nanomater Mol Nanotechnol 6(3):1–6

    Article  Google Scholar 

  64. Rajkuberan C, Prabukumar S, Sathishkumar G, Wilson A, Ravindran K, Sivaramakrishnan S (2017) Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents. J Saudi Chem Soc 21(8):911–919

    Article  Google Scholar 

  65. Kalaiselvi D, Mohankumar A, Shanmugam G, Nivitha S, Sundararaj P (2019) Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Prot 117:108–114

    Article  Google Scholar 

  66. Sundaravadivelan C, Nalini M (2012) Biolarvicidal effect of phyto-synthesized silver nanoparticles using Pedilanthus tithymaloides (L.) Poit stem extract against the dengue vector Aedes aegypti L. (Diptera; Culicidae). Asian Pac J Trop Biomed 17:1–8

    Google Scholar 

  67. Sajjadi M, Nasrollahzadeh M, Sajadi S (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J Colloid Interface Sci 497:1–13

    Article  Google Scholar 

  68. Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Sing N (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 59(8):4782–4799

    Article  Google Scholar 

  69. Atarod M, Nasrollahzadeh M, Sajadi SM (2016) Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J Colloid Interface Sci 462:272–279

    Article  Google Scholar 

  70. Pradyutha AC, Umamaheswara Rao V, Tirupati Rao YRKV (2018) Biosynthesis, characterization and antibacterial activity of silver nanoparticles of Euphorbia milii des moul. Leaf extract Int Res J Pharm 9(6):154–157

    Article  Google Scholar 

  71. Ullah R, ud Din S, Muhammad Z, Shah S, Jan SA (2018) Biological efficacy of phyto-synthetic silver nanoparticles using ethanol extract of Euphorbia wallichii Hook Rhizome as bio-reductant and surfactant. Trop J Pharm Res 17(10):1903–1909

    Article  Google Scholar 

  72. Selvam P, Vijayakumar T, Wadhwani A, Muthulakshmi L (2019) Bioreduction of silver nanoparticles from aerial parts of Euphorbia hirta L. (EH-ET) and its potent anticancer activities against neuroblastoma cell lines. Indian J. Biochem. Biophys (IJBB) 56(2):132–136

    Google Scholar 

  73. Panneerselvam C, Murugan K, Amerasan D (2015) Biosynthesis of silver nanoparticles using plant extract and its anti-plasmodial property. In Adv Mater Res 1086:11–30

    Article  Google Scholar 

  74. Bennet Rohan D, Raji P, Divya Kumar M, Kripu Sharma V, Keerthana D, Karishma S, Prakash P (2020) Green synthesis and antibacterial activity studies of silver nanoparticles from the aqueous extracts of euphorbia hirta. J Pure Appl Microbiol 14(1):301–306

    Article  Google Scholar 

  75. Priya MM, Selvi BK, Paul JA (2011) Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig J Nanomater Biostructures (DJNB) 6(2):869–877

    Google Scholar 

  76. Raji P, Samrot AV, Keerthana D, Karishma S (2019) Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J Clust Sci 30(4):881–895

    Article  Google Scholar 

  77. Akbal A, Turkdemir MH, Cicek A, Ulug B (2016) Relation between silver nanoparticle formation rate and antioxidant capacity of aqueous plant leaf extracts. J Spectrosc 2016:1–6

    Article  Google Scholar 

  78. Saha S, Bala N, Basu R, Das S (2018) Acute toxicity study of silver nanoparticle coupled with Euphorbia thymifolia. J Nanosci Technol 13:412–414

    Article  Google Scholar 

  79. Zahir AA, Rahuman A (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 187(3–4):511–520

    Article  Google Scholar 

  80. Timi D, Gopalakrishnan S, Maino M (2018) Characterization and Antimicrobial Assessment of phytosynthesized Silver Nanoparticles using Aqueous Extract of Euphorbia geniculata. Indian J Sci Technol 11:47

    Google Scholar 

  81. Elumalai EK, Prasad TNVKV, Venkata K, Nagajyothi PC, David E (2010) Green synthesis of silver nanoparticle using Euphorbia hirta L. and their antifungal activities. Arch Appl Sci Res 2(6):76–81

    Google Scholar 

  82. Elumalai EK, Prasad TNVKV, Hemachandran J, Therasa SV, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2(9):549–554

    Google Scholar 

  83. de Matos RA, da Silva CT, Samad RE, Vieira ND Jr, Courrol LC (2011) Green synthesis of stable silver nanoparticles using Euphorbia milii latex. Colloids Surf A: Physicochem Eng Asp 389(1–3):134–137

    Article  Google Scholar 

  84. Pokhrel B, Nilling JJ, Ete T, Bharti A (2017) Green synthesis of stable silver nanoparticles using Euphorbia milii extract and study of its antimicrobial activity against Escherichia coli. Int J Chem Stud 5(4):1124–1128

    Google Scholar 

  85. Nasrollahzadeh M, Sajadi SM, Babaei F, Maham M (2015) Euphorbia helioscopia Linn. as a green source for synthesis of silver nanoparticles and their optical and catalytic properties. J Colloid Interface Sci 450:374–380

    Article  Google Scholar 

  86. Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167(4):776–790

    Article  Google Scholar 

  87. Devi NS, Padma Y, Raju RV (2021) Green synthesis of silver nanoparticles through reduction with Euphorbia nivulia Buch.-Ham., stem bark extract: Characterization and antimicrobial activity. J. Pharmacogn. Phytother 13(2):60–67

    Article  Google Scholar 

  88. Cicek S, Gungor AA, Adiguzel A, Nadaroglu H (2015) Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J Chem 2015:1–7

    Article  Google Scholar 

  89. Devi GD, Murugan K, Selvam CP (2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopestic 7:54–66

    Google Scholar 

  90. Lotha R, Sivasubramanian A, Muthuraman M (2018) Silver nanoparticles from medicinally important Euphorbia cyathophora extract: biosynthesis, characterization, and anticancer activity. Asian J Pharm Clin Res 11(2):154–156

    Article  Google Scholar 

  91. Phull AR, Ali A, Ali A, Abbasi S, Zia M, Khaskheli MH, Kamal MA (2020) Synthesis of silver nanoparticles using Euphorbia wallichii extract and assessment of their bio-functionalities. Med Chem 16(4):495–506

    Article  Google Scholar 

  92. Yuvarajan R, Jayavel R, Senthil B, Natarajan D (2014) Synthesis, characterization of Euphorbia fusiformis leaf extract mediated silver nanoparticles and its antibacterial potential. J Nanopharm Drug Deliv 2(4):305–310

    Article  Google Scholar 

  93. Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  Google Scholar 

  94. Valodkar M, Nagar PS, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: a rational approach to antimicrobial applications. Colloids Surf A Physicochem Eng Asp 384(1–3):337–344

    Article  Google Scholar 

  95. Kumar SA, Priyadarshini HS, Paramita AP, Pinki S, Sakshi G, Kar BR, Kiran BK (2019) Green synthesis and biochemical characterization of silver nanoparticles by using Euphorbia umbellata leaf extract and analysis of antimicrobial activity against plant pathogens. GSC Biol Pharm Sci 8(2):59–69

    Article  Google Scholar 

  96. Prema RR (2009) Fabrication and characterization of silver nanoparticle and its potential antibacterial activity. Biotechnol Bioprocess Eng 14(6):842–847

    Article  Google Scholar 

  97. Geoprincy G, Srri BV, Poonguzhali U, Gandhi NN, Renganathan S (2013) A review on green synthesis of silver nanoparticles. Asian J Pharm Clin Res 6(1):8–12

    Google Scholar 

  98. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 15:2555

    Article  Google Scholar 

  99. Mikhailova EO (2020) Silver nanoparticles: mechanism of action and probable bio-application. J Funct Biomater 11(4):84

    Article  Google Scholar 

  100. Abdelhamid HN, Talib A, Wu HF (2015) Facile synthesis of water-soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv 5(44):34594–34602

    Article  Google Scholar 

  101. Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18(4):356–363

    Article  Google Scholar 

  102. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):1–24

    Article  Google Scholar 

  103. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019) Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8(4):96

    Article  Google Scholar 

  104. Majid M, Khan MR, Shah NA, Haq IU, Farooq MA, Ullah S, Sajid M (2015) Studies on phytochemical, antioxidant, anti-inflammatory and analgesic activities of Euphorbia dracunculoides. BMC Complement Altern Med 15(1):1–15

    Article  Google Scholar 

  105. Xia ZK, Ma QH, Li SY, Zhang DQ, Cong L, Tian YL, Yang RY (2016) The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect 49(2):182–188

    Article  Google Scholar 

  106. Adesuji ET, Oluwaniyi OO, Adegoke HI, Moodley R, Labulo AH, Bodede OS, Oseghale CO (2016) Investigation of the larvicidal potential of silver nanoparticles against Culex quinquefasciatus: a case of a ubiquitous weed as a useful bioresource. J Nanomater 2016:1–12

    Article  Google Scholar 

  107. Pucci C, Martinelli C, Ciofani G (2019) Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 13:961

    Article  Google Scholar 

  108. Hussain MA, Mukhtar T, Kayani MZ (2011) Assessment of the damage caused by Meloidogyne incognita on okra (Abelmoschus esculentus). J Anim Plant Sci 21(4):857–861

    Google Scholar 

Download references

Acknowledgements

This study was funded by Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sameena.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sameena, V.P., Thoppil, J.E. Green synthesis of silver nanoparticles from Euphorbia and its biological activities. Nanotechnol. Environ. Eng. 7, 377–392 (2022). https://doi.org/10.1007/s41204-022-00232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00232-6

Keywords

Navigation