Skip to main content
Log in

Synthesis of less acidic VO-salen complex grafted onto graphene oxide via functionalization of surface carboxyl groups for the selective oxidation of norbornene

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

Oxidation of norbornene was carried out over oxovanadium Schiff base complex grafted on –OH and –COOH modified graphene oxide (GO) as heterogeneous catalysts using 30% H2O2 as an oxidant and ethylene glycol as a solvent. Amongst them, the carboxylic acid group modified GO was found to be better for this transformation. The lower conversion with –OH modified catalyst was ascribed to the higher acidic nature of the catalyst. NH3-TPD study confirmed the less acidic sites on the –COOH modified catalyst and this less acidic nature and controlled addition of 30% H2O2 became the centre of action for this catalytic transformation. Absolute conversion of norbornene (100%) with 98.8% 2,3-epoxy norbornane was achieved at 60 °C in 1 h. This catalyst was recycled four times without significant loss of activity. This durability of the catalyst was believed to be due to strong ππ stacking interaction of GO sheet and an unsaturated ring of ligand and cyclic structure of ligand which protect the metal to leach out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Franz G, Sheldon RA (2000) Oxidation. In: Ullmann F (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley, New York. https://doi.org/10.1002/14356007.a18_261

    Chapter  Google Scholar 

  2. Kani I, Kurtça M (2012) Synthesis, structural characterization, and benzyl alcohol oxidation activity of mononuclear manganese(II) complex with 2,2’-bipyridine: [Mn(bipy)2(ClO4)2]. Turk J Chem 36(6):827–840

    CAS  Google Scholar 

  3. Gallezot P (1997) Selective oxidation with air on metal catalysts. Catal Today 37(4):405–418

    CAS  Google Scholar 

  4. George K, Sugunan S (2008) Nickel substituted copper chromite spinels: Preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene. Catal Commun 9:2149–2153

    CAS  Google Scholar 

  5. Devika S, Palanichamy M, Murugesan V (2012) Selective oxidation of diphenylmethane to benzophenone over CeAlPO-5 molecular sieves Cuihua Xuebao. Chin J Catal 33:1086–1094

    CAS  Google Scholar 

  6. Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297

    CAS  Google Scholar 

  7. Clark JH, Macquarrie DJ (1997) Heterogeneous catalysis in liquid phase transformations of importance in the industrial preparation of fine chemicals. Org Process Res Dev 1:149–162

    CAS  Google Scholar 

  8. Khaleghi M, Didehban K, Shabanian M (2017) Effect of new melamine-terephthaldehyde resin modified graphene oxide on thermal and mechanical properties of PVC. Polym Test 63:382–391

    CAS  Google Scholar 

  9. Omidi S, Kakanejadifard A, Azarbani F (2017) Noncovalent functionalization of graphene oxide and reduced graphene oxide with Schiff bases as antibacterial agents. J Mol Liq 242:812–821

    CAS  Google Scholar 

  10. Ryu SH, Shanmugharaj AM (2014) Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites. Chem Eng J 244:552–560

    CAS  Google Scholar 

  11. Wåhlander M, Nilsson F, Andersson RL, Carlmark A, Hillborg H, Malmström E (2017) Reduced and surface-modified graphene oxide with nonlinear resistivity. Macromol Rapid Commun 38:1700291

    Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    CAS  Google Scholar 

  13. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    CAS  Google Scholar 

  14. Hu YH, Wang H, Hu B (2010) Thinnest two-dimensional nanomaterials-graphene for solar energy. Chemsuschem 3:782–796

    CAS  Google Scholar 

  15. Pyun J (2011) Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew Chem Int Ed 50:46–48

    CAS  Google Scholar 

  16. Wang L, Lee K, Sun YY, Lucking M, Chen Z, Zhao JJ, Zhang SB (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3:2995–3000

    CAS  Google Scholar 

  17. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Google Scholar 

  19. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    CAS  Google Scholar 

  20. Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 22:892–896

    CAS  Google Scholar 

  21. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    CAS  Google Scholar 

  22. Kamat PV (2010) Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527

    CAS  Google Scholar 

  23. Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8:4373–4379

    CAS  Google Scholar 

  24. Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z (2010) Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2:2733–2738

    CAS  Google Scholar 

  25. Jasuja K, Linn J, Melten S, Berry V (2010) Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and Raman properties. J Phys Chem Lett 1:1853–1860

    CAS  Google Scholar 

  26. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc 131:8262–8270

    CAS  Google Scholar 

  27. Zhou M, Zhang A, Dai Z, Zhang C, Feng YP (2010) Greatly enhanced adsorption and catalytic activity of Au and Pt clusters on defective graphene. J Chem Phys 132:194704

    Google Scholar 

  28. Stein M, Wieland J, Steurer P, Tolle F, Mulhaupt R, Breit B (2011) Iron nanoparticles supported on chemically-derived graphene: catalytic hydrogenation with magnetic catalyst separation. Adv Synth Catal 353:523–527

    CAS  Google Scholar 

  29. Chang MS, Kim YS, Kang JH, Park J, Sung SJ, So SH, Park KT, Yang SJ, Kim T, Park CR (2017) Guidelines for tailored chemical functionalization of graphene. Chem Mater 29:307–318

    CAS  Google Scholar 

  30. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055

    CAS  Google Scholar 

  31. Dabhi SD, Jha PK (2017) Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups. Physica E Low Dimens Syst Nanostruct 93:332–338

    CAS  Google Scholar 

  32. Qiu C, Liu D, Jin K, Fang L, Xie G, Robertson J (2017) Electrochemical functionalization of 316 stainless steel with polyaniline-graphene oxide: corrosion resistance study. Mater Chem Phys 198:90–98

    CAS  Google Scholar 

  33. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420

    CAS  Google Scholar 

  34. Liu C, Du P, Zhao H, Wang L (2018) Synthesis of l-histidine-attached graphene nanomaterials and their application for steel protection. ACS Appl Nano Mater 1:1385–1395

    CAS  Google Scholar 

  35. Fan Z, Wong KK, Chen S, Lau SP, Po KHL (2018) Polyethylenimine-modified graphene oxide as a novel antibacterial agent and its synergistic effect with daptomycin for methicillin-resistant staphylococcus aureus. ACS Appl Nano Mater 1:1811–1818

    CAS  Google Scholar 

  36. Zhang B, Yan Y, Shen Q, Ma D, Huang L, Cai X, Tan S (2017) A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater Sci Eng, C 79:185–190

    CAS  Google Scholar 

  37. Kongkaew S, Kanatharana P, Thavarungkul P, Limbut W (2017) A preparation of homogeneous distribution of palladium nanoparticle on poly(acrylic acid)-functionalized graphene oxide modified electrode for formalin oxidation. Electrochim Acta 247:229–240

    CAS  Google Scholar 

  38. Gupta RK, Malviya M, Verma C, Quraishi MA (2017) Aminoazobenzene and diaminoazobenzene functionalized graphene oxides as novel class of corrosion inhibitors for mild steel: experimental and DFT studies. Mater Chem Phys 198:360–373

    CAS  Google Scholar 

  39. Sun Y, Wang Y, Li J, Ding C, Lin Y, Sun W, Luo C (2017) An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta 174:809–818

    CAS  Google Scholar 

  40. Yakout AA, El-Sokkary RH, Shreadah MA, Abdel Hamid OG (2017) Cross-linked graphene oxide sheets via modified extracted cellulose with high metal adsorption. Carbohydr Polym 172:20–27

    CAS  Google Scholar 

  41. Zhang H, Li B, Pan J, Qi Y, Shen J, Gao C, Van der Bruggen B (2017) Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt. J Membr Sci 539:128–137

    CAS  Google Scholar 

  42. Mungse HP, Verma S, Kumar N, Sain B, Khatri OP (2012) Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. J Mater Chem 22:5427–5433

    CAS  Google Scholar 

  43. Allahresani A (2017) Ni(II) schiff base complex immobilized on graphene oxide nano-sheets catalyzed epoxidation of alkenes. J Iran Chem Soc 14:1051–1057

    CAS  Google Scholar 

  44. Vithalani R, Patel D, Modi CK, Som NN, Jha PK, Kane SR (2018) Enhancing the potency of surface hydroxyl groups of graphene oxide for selective oxidation of benzyl alcohol. Diam Relat Mater 90:154–165

    CAS  Google Scholar 

  45. Rozov LA, Rafalko PW, Evans SM, Brockunier L, Ramig KJ (1995) Asymmetric synthesis of the volatile anesthetic 1,2,2,2-tetrafluoroethyl chlorofluoromethyl ether using a stereospecific decarboxylation of unusual stereochemical outcome. J Org Chem 60:1319–1325

    CAS  Google Scholar 

  46. Carpino LA, Cohen BJ, Stephens KE Jr, Aalaee YS, Tien JH, Langridge DC (1986) (Fluoren-9-ylmethoxy) carbonyl (Fmoc) amino acid chlorides. Synthesis, characterization, and application to the rapid synthesis of short peptide segments. J Org Chem 51:3732–3734

    CAS  Google Scholar 

  47. Wissner A, Grudzinskas CVJ (1978) Reaction of tert-butyldimethylsilyl esters with oxalyl chloride-dimethylformamide: preparation of carboxylic acid chlorides under neutral conditions. J Org Chem 43:3972–3974

    CAS  Google Scholar 

  48. Leggio A, Belsito EL, De Luca G, Di Gioia ML, Leotta V, Romio E, Siciliano C, Liguori A (2016) One-pot synthesis of amides from carboxylic acids activated using thionyl chloride. RSC Adv 6:34468–34475

    CAS  Google Scholar 

  49. Burdock GA (2005) Fenaroli’s handbook of flavor ingredients. CRC Press, Boca Raton

    Google Scholar 

  50. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721

    CAS  Google Scholar 

  51. Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater 21:1275–1279

    CAS  Google Scholar 

  52. Liu ZB, Xu YF, Zhang XY, Zhang XL, Chen YS, Tian JG (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113:9681–9686

    CAS  Google Scholar 

  53. Zhang X, Huang Y, Wang Y, Ma Y, Liu Z, Chen Y (2009) Synthesis and characterization of a graphene-C60 hybrid material. Carbon 47:334–337

    CAS  Google Scholar 

  54. Vithalani R, Patel D, Modi CK, Som NN, Jha PK (2020) Graphene oxide supported oxovanadium (iv) complex for catalytic peroxidative epoxidation of styrene: an eye-catching impact of solvent. Appl Organomet Chem 34:e5500

    CAS  Google Scholar 

  55. Erden I (1996) Three-membered rings, with all fused systems containing three-membered rings. In: Katritzky AR, Rees CW, Scriven EFV, Padwa A (eds) Comprehensive heterocyclic chemistry II, vol 1A. Pergamon, New York, pp 97–144

    Google Scholar 

  56. Patel D, Vithalani R, Modi CK (2020) Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for Knoevenagel condensation with active methylene compounds. New J Chem 44:2868–2881

    CAS  Google Scholar 

  57. Shen JF, Yan B, Shi M, Ma HW, Li N, Ye MX (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21:3415–3421

    CAS  Google Scholar 

  58. Li L, Dou YY, Wang LF, Luo M, Liang J (2014) One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances. RSC Adv 4:25658–25665

    CAS  Google Scholar 

  59. Vu MC, Park GD, Bae YH, Kim SR (2016) Enhanced thermal conductivity of pressure sensitive adhesives using hybrid fillers of SiC microparticle and SiC nanoparticle grafted graphene oxide. Polymer (Korea) 40(5):804–812

    CAS  Google Scholar 

  60. Samal S, Acharya RK, Dey ARR (2003) Synthesis, characterization, and metal ion uptake studies of chelating resins derived from formaldehyde/furfuraldehyde condensed phenolic schiff base of 4,4′-diaminodiphenylmethane and o-hydroxyacetophenone. J Appl Polym Sci 88:570–581

    CAS  Google Scholar 

  61. Charef N, Arrar L, Ourari A, Zalloum RM, Mubarak MS (2010) Synthesis and chelating properties of polystyrene supported Schiff base (N,N′-disalicylidenepropylenetriamine) resin toward some divalent metal ions. J Macromol Sci A 47:177–184

    CAS  Google Scholar 

  62. Vinod Kumar GS, Mathew B (2004) Effect of the nature and degree of crosslinking on the catalase-like activity of polystyrene-supported Schiff base-metal complexes. J Appl Polym Sci 92:1271–1278

    Google Scholar 

  63. Li Y, Yang N, Du T, Wang X, Chen W (2016) Transformation of graphene oxide by chlorination and chloramination: implications for environmental transport and fate. Water Res 103:416–423

    CAS  Google Scholar 

  64. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    CAS  Google Scholar 

  65. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    CAS  Google Scholar 

  66. Stankovich S, Dikin DA, Compton OC, Dommett GHB, Ruoff RS, Nguyen ST (2010) Systematic post-assembly modification of graphene oxide paper with primary alkylamines. Chem Mater 22:4153–4157

    CAS  Google Scholar 

  67. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    CAS  Google Scholar 

  68. Diez N, Śliwak A, Gryglewicz S, Grzyb B, Gryglewicz GZ (2015) Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment. RSC Adv 5:81831–81837

    CAS  Google Scholar 

  69. Manna AK, Pati SK (2009) Tuning the electronic structure of graphene by molecular charge transfer: a computational study. Chem Asian J 4:855–860

    CAS  Google Scholar 

  70. Xie J, Wu C, Hu S, Dai J, Zhang N, Feng J, Yang J, Xie Y (2012) Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior. Phys Chem Chem Phys 14(14):4810–4816

    CAS  Google Scholar 

  71. Tanwar S, Chuang MC, Prasad KS, Ho JAA (2012) Template-free synthesis of an electroactive Au-Calix-PPY nanocomposite for electrochemical sensor applications. Green Chem 14:799–808

    CAS  Google Scholar 

  72. Elio D, Barbara B (2015) X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors 3:70–117

    Google Scholar 

  73. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer Corportaion, Physical Electronics Division, USA

    Google Scholar 

  74. Mallineni SSK, Bhattacharya S, Liu F, Puneet P, Rao A, Srivastava A, Podila R (2016) Ch 5: Defect engineered 2D materials for energy applications. In: Nyaak PK (ed) Two-dimensional materials—synthesis, characterization and potential applications. IntechOpen Ltd, London, pp 83–102. https://doi.org/10.5772/64605

    Chapter  Google Scholar 

  75. Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    CAS  Google Scholar 

  76. Kala Raj NK, Ramaswamy AV, Manikandan P (2005) Oxidation of norbornene over vanadium-substituted phosphomolybdic acid catalysts and spectroscopic investigations. J Mol Cata A 227:37–45

    Google Scholar 

  77. Li Z, Wu S, Ding H, Zheng D, Hu J, Wang X, Huo Q, Guan J, Kan Q (2013) Immobilized Cu(II) and Co(II) salen complexes on graphene oxide and their catalytic activity for aerobic epoxidation of styrene. New J Chem 37(5):1561–1568

    CAS  Google Scholar 

  78. Pour SR, Abdolmaleki A, Dinari M (2019) Immobilization of new macrocyclic Schiff base copper complex on graphene oxide nanosheets and its catalytic activity for olefins epoxidation. J Mater Sci 54:2885–2896

    CAS  Google Scholar 

  79. Xiao D, Sun W, Dai H, Zhang Y, Qin X, Li L, Wei Z, Chen X (2014) Influence of charge states on the & #x03C0;–π interactions of aromatic side chains with surface of graphene sheet and single-walled carbon nanotubes in bioelectrodes. J Phys Chem C 118:20694–20701

    CAS  Google Scholar 

  80. Kharisov BI, Kharissova OV, Vazquez Dimas A, Gomez De La Fuente I, Pena Mendez Y (2016) Graphene-supported coordination complexes and organometallics: properties and applications. J Coord Chem 69:1125–1151

    CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Head, Applied Chemistry Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India for providing the necessary laboratory facilities. Authors are thankful to the DST-PURSE program for providing Raman measurements. Authors are also highly thankful to UGC-DAE Consortium for Scientific Research, Indore, India and Raja Ramanna Centre for Advanced Technology, Indore, India for providing HRTEM and XPS facilities.

Funding

This study was not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan K. Modi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vithalani, R.S., Patel, D., Modi, C.K. et al. Synthesis of less acidic VO-salen complex grafted onto graphene oxide via functionalization of surface carboxyl groups for the selective oxidation of norbornene. Graphene Technol 5, 83–101 (2020). https://doi.org/10.1007/s41127-020-00037-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-020-00037-x

Keywords

Navigation