Skip to main content
Log in

Graphene oxide in water: a systematic computational experimental study

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

In this work, solvent effects on graphene oxide (GO) in liquid water were analyzed in terms of hydrogen bonds and electronic properties. The sequential Monte Carlo/quantum mechanics simulation was used to generate the molecular structures of the GO sheet structure in aqueous solution. It was observed a large increase of approximately 130\(\%\) in the dipole moments of the GO sheets in water solvent and hydrogen bonding statistics were obtained. In addition, INDO/CIS quantum mechanics calculations were performed in the super-molecular generated structures in order to obtain the ultraviolet–visible spectra for GO in liquid water. These theoretical results were supported by our experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dimiev AM, Eigler S (2016) Graphene oxide: fundaments and applications. Wiley, London

    Book  Google Scholar 

  2. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide. Nature 448:457. https://doi.org/10.1038/nature06016

    Article  CAS  Google Scholar 

  3. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  4. Lu C, Yang H, Zhu C, Chen X, Chen G (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785. https://doi.org/10.1002/anie.200901479

    Article  CAS  Google Scholar 

  5. Kymakis E, Savva K, Stylianakis MM, Fotakis C, Stratakis E (2013) Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater 23:2742. https://doi.org/10.1002/adfm.201202713

    Article  CAS  Google Scholar 

  6. Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466

    Google Scholar 

  7. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  8. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  9. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen JM, Ruoff RS (2008) Synthesis and solid-state nmr structural characterization of 13c-labeled graphite oxide. Science 321:1815. https://doi.org/10.1126/science.1162369

    Article  CAS  Google Scholar 

  10. Plotnikov VG, Smirnov VA, Alfimov MV, Shulga YM (2011) The graphite oxide photoreduction mechanism. High Energy Chem 45:411. https://doi.org/10.1134/S0018143911050158

    Article  CAS  Google Scholar 

  11. López-Díaz D, Holgado ML, García-Fierro JL, Velázquez MM (2017) Evolution of the raman spectrum with the chemical composition of graphene oxide. J Phys Chem C 121:20489. https://doi.org/10.1021/acs.jpcc.7b06236

    Article  CAS  Google Scholar 

  12. Ozcan S, Vempati S, Çırpan A, Uyar T (2018) Associative behaviour and effect of functional groups on the fluorescence of graphene oxide. Phys Chem Chem Phys 20:7559. https://doi.org/10.1039/C7CP08334C

    Article  CAS  Google Scholar 

  13. Konios D, Stylianakis MM, Stratakis E, Kymakis E (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108. https://doi.org/10.1016/j.jcis.2014.05.033

    Article  CAS  Google Scholar 

  14. Junqueira GMA, Mendonça JPA, Lima AH, Quirino WG, Sato F (2016) Enhancement of nonlinear optical properties of graphene oxide-based structures: push–pull models. RSC Adv 6:94437. https://doi.org/10.1039/C6RA18314J

    Article  CAS  Google Scholar 

  15. Neto AP, Fileti EE (2018) Elucidating the amphiphilic character of graphene oxide. Phys Chem Chem Phys 20:9507. https://doi.org/10.1039/C8CP00797G

    Article  Google Scholar 

  16. Rouzière S, Launois P, Benito AM, Maser WK, Paineau E (2018) Unravelling the hydration mechanism in a multi-layered graphene oxide paper by in-situ x-ray scattering. Carbon 137:379. https://doi.org/10.1016/j.carbon.2018.05.043

    Article  CAS  Google Scholar 

  17. Lima AH, Mendonça JP, Duarte M, Stavale F, Legnani C, Carvalho GSGD, Maciel IO, Sato F, Fragneaud B, Quirino WG (2017) Reduced graphene oxide prepared at low temperature thermal treatment as transparent conductors for organic electronic applications. Org Electron 49:165. https://doi.org/10.1016/j.orgel.2017.05.054

    Article  CAS  Google Scholar 

  18. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford, London

    Google Scholar 

  19. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Ab initio calculation of hydrogen bonds in liquids: a sequential monte carlo quantum mechanics study of pyridine in water. J Chem Phys 21:1087. https://doi.org/10.1063/1.1699114

    Article  CAS  Google Scholar 

  20. Coutinho K, Rivelino R, Georg HC, Canuto S (2008) Solvation effects on molecules and biomolecules. Computational methods and applications. Springer, Berlin

    Google Scholar 

  21. Jorgensen WL, Briggs JM, Contreras ML (1990) Relative partition coefficients for organic solutes from fluid simulations. J Phys Chem 94:1683. https://doi.org/10.1021/j100367a084

    Article  CAS  Google Scholar 

  22. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  23. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models of water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces: proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry. Reidel, Dordrecht, pp 331–342

  24. Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) An efficient statistically converged average configuration for solvent effects. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2007.02.012

    Article  Google Scholar 

  25. Neese F (2012) The orca program system, Wiley interdisciplinary reviews: computational molecular. Science 2(1):73. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  26. Neese F (2018) Software update: the orca program system, version 4.0, Wiley interdisciplinary reviews: computational molecular. Science 8(1):e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  27. DICE, version 2.8; University of São Paulo (2000)

  28. Modesto-Costa L, Mukherjee PK, Canuto S (2016) A caspt2 study of the spectral shift of the resonance emission lines of Rb and Cs embedded in liquid He. Chem Phys Lett 655–656:91. https://doi.org/10.1016/j.cplett.2016.05.040

    Article  CAS  Google Scholar 

  29. Ludwig V, Coutinho K, Canuto S (2004) Sequential classical-quantum description of the absorption spectrum of the hydrated electron. Phys Rev B 70:21411. https://doi.org/10.1103/PhysRevB.70.214110

    Article  CAS  Google Scholar 

  30. Lacerda EG, Sauer SPA, Mikkelsen K, Coutinho K, Canuto S (2018) Theoretical study of the nmr chemical shift of Xe in supercritical condition. J Mol Model 24:62. https://doi.org/10.1007/s00894-018-3600-4

    Article  CAS  Google Scholar 

  31. Malaspina T, Coutinho K, Canuto S (2002) Ab initio calculation of hydrogen bonds in liquids: a sequential monte carlo quantum mechanics study of pyridine in water. J Chem Phys 117(4):1692. https://doi.org/10.1063/1.1485963

    Article  CAS  Google Scholar 

  32. Stilinger FH, Rahman A (1974) Improved simulation of liquid water by molecular dynamics. J Chem Phys 60:1545. https://doi.org/10.1063/1.1681229

    Article  Google Scholar 

  33. Stilinger FH (1975) Theory and molecular models for water. Adv Chem Phys 31:1. https://doi.org/10.1002/9780470143834.ch1

    Article  Google Scholar 

  34. Ridley J, Zerner M (1973) An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theor Chim Acta 32:111. https://doi.org/10.1007/BF00528484

    Article  CAS  Google Scholar 

  35. Zerner MC (1991) Semiempirical Molecular Orbital Methods. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH, New York

  36. Saxena S, Tyson TA, Shukla S, Negusse E, Chen H, Bai J (2011) Investigation of structural and electronic properties of graphene oxide. Appl Phys Lett 99:013104. https://doi.org/10.1063/1.3607305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks to brazilian funds Cnpq, Fapemig and the high-performance computer facilities of CENAPAD-SP and LNCC and the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer, which have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdemir Ludwig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1118 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, V., de Mendonça, J.P.A., de Lima, A.H. et al. Graphene oxide in water: a systematic computational experimental study. Graphene Technol 5, 1–8 (2020). https://doi.org/10.1007/s41127-019-00028-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-019-00028-7

Keywords

Navigation