Skip to main content

Advertisement

Log in

Analysis of \(\hbox {CO}_2\) reduction potentials and component load collectives of 48 V-hybrids under real-driving conditions

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

The development of innovative powertrain technologies is crucial for car manufacturers to comply with decreasing \(\hbox {CO}_2\) emission limits. They face the challenge to develop products which fulfill customer requirements in terms of functionality, comfort and cost but also provide a significant \(\hbox {CO}_2\) efficiency improvement. \({48}\hbox { V}\)-hybrids can achieve these conflicting goals due to their low vehicle-integration effort and system costs while substantially increasing powertrain efficiency. The variance of real-driving scenarios has to be considered in system development to achieve the maximum customer benefit with the chosen system design, such as installed electrical power or topology. This paper presents a comprehensive investigation of different \({48}\hbox { V}\)-system designs under real-driving conditions. The influence of varying real-driving scenarios on component load collectives is analyzed for P1 and P2 topologies. Furthermore, the \(\hbox {CO}_2\) reduction potential and the influence of different hybrid functions such as electric driving is identified. The contribution of this paper is the identification of \({48}\hbox { V}\)-system potentials under real-driving conditions and the corresponding component requirements, in order to support the development of customer-oriented \({48}\hbox { V}\)-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alnamasi, K., Terry, S., La Rocca, A., Cairns, A.: Brake power availability LED optimisation of P0 versus P2 48V hybrid powertrain architectures. In: SAE Technical Paper Series, SAE Technical Paper Series. SAE International400 Commonwealth Drive, Warrendale, PA, United States (2020)

  2. André, M.: The ARTEMIS European driving cycles for measuring car pollutant emissions. Sci. Total Environ. 334–335, 73–84 (2004)

    Article  Google Scholar 

  3. Ardey, N.: Future technology mix for emission-free mobility. In: 27th Aachen Colloquium Automobile and Engine Technology 2018 (2018)

  4. Balazs, A., Nijs, M., Pischinger, S. Optimierte Auslegung von Hybridantriebssträngen unter Realen Fahrbedingungen. ATZ Automobiltech Z 114, 534–541 (2012)

  5. Bao, R., Avila, V., Baxter, J.: Effect of 48 V mild hybrid system layout on powertrain system efficiency and its potential of fuel economy improvement. SAE Technical Paper 2017-01-1175 (2017)

  6. Blumenröder, K., Bennewitz, K., Zillmer, M., Mann, A., Voeltz, T.: Das 48V-Mild-Hybrid-Antriebsstrangsystem des Volkswagen Golf 8: Auslegung und Steuerung, vol. 40. Internationales Motorensymposium 2019 (2019)

  7. Bongards, A., Mohon, S., Semenov, D., Wenzel, W.: Comparing 48V mild hybrid concepts using a hybrid-simulation-toolkit. In: Bargende, M., Reuss, H.C., Wagner, A., Wiedemann, J. (eds.) 19. Internationales Stuttgarter Symposium, Proceedings, vol. 74, pp. 1085–1100. Springer, Fachmedien, Wiesbaden (2019)

  8. Bünder, C.: A scalable approach for future vehicle electrification. In: Bargende, M., Reuss, H.C., Wagner, A., Wiedemann, J. (eds.) 19. Internationales Stuttgarter Symposium, Proceedings, p. 319. Springer, Fachmedien, Wiesbaden (2019)

  9. Bütterling, P., Benders, B., Eckstein, L.: Effiziente 48-V-Antriebs-und Bordnetzarchitekturen. MTZ Motortechnische Z. 77(9), 48–53 (2016)

    Article  Google Scholar 

  10. de Cesare, M., Cavina, N., Brugnoni, E.: Conceptual design and analytic assessment of 48V electric hybrid powertrain architectures for passenger cars. In: SAE Technical Paper Series, SAE Technical Paper Series. SAE International400 Commonwealth Drive, Warrendale, PA, United States (2019)

  11. Eisele, A., Horlbeck, L., Hann, M., Jäger, B., Lienkamp, M.: Real-life data based analysis of driving cycles regarding their insufficient cycle duration. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, pp. 408–415 (2016)

  12. Fathy, H.K., Reyer, J.A., Papalambros, P.Y., Ulsov, A.G.: On the coupling between the plant and controller optimization problems. In: Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), Arlington, VA, USA, vol. 3, pp. 1864–1869 (2001)

  13. Förster, D., Inderka, R.B., Gauterin, F.: Data-driven identification of characteristic real-driving cycles based on k-means clustering and mixed-integer optimization. IEEE Trans. Veh. Technol. 69(3), 2398–2410 (2020)

    Article  Google Scholar 

  14. Förster, D., Timmann, M., Inderka, R., Strenkert, J.: Impacts of Future 48 V-Systems on Powertrain Operation under Real-Driving Conditions. In: Bargende, M., Reuss, H.C., Wagner, A., Wiedemann, J. (eds.) 20. Internationales Stuttgarter Symposium, Proceedings. Springer, Fachmedien, Wiesbaden (2020)

  15. Fritz, M., Hillenbrand, T., Pfund, T.: 48-V-Technologien im Fahrzeug. ATZextra 22(S1), 28–33 (2017)

    Article  Google Scholar 

  16. Huang, Y., Wang, H., Khajepour, A., Li, B., Ji, J., Zhao, K., Hu, C.: A review of power management strategies and component sizing methods for hybrid vehicles. Renew. Sustain. Energy Rev. 96, 132–144 (2018)

    Article  Google Scholar 

  17. Kirchner, E., Kufner, A., Sattler, M.: Electric Axle for 48-V electrical hybrid systems. MTZ Worldw. 76(5), 10–15 (2015)

    Article  Google Scholar 

  18. Lee, S., Cherry, J., Safoutin, M., McDonald, J., Olechiw, M.: Modeling and validation of 48 V mild hybrid lithium-ion battery pack. SAE Int. J. Alt. Power. 7(3), 273–287 (2018)

    Article  Google Scholar 

  19. Melaika, M., Mamikoglu, S., Dahlander, P.: 48V Mild-Hybrid Architecture Types, Fuels and Power Levels Needed to Achieve 75g CO2/km, SAE Technical Paper 2019-01-0366 (2019)

  20. Onori, S., Serrao, L.: On adaptive-ECMS strategies for hybrid electric vehicles. Proc. of the International Scientific Conference on Hybrid and Electric Vehicles, pp. 1–7 (2011)

  21. Paganelli, G., Delprat, S., Guerra, T.M., Rimaux, J., Santin, J.J.: Equivalent consumption minimization strategy for parallel hybrid powertrains. In: Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367), Birmingham, AL, USA, vol. 4, pp. 2076–2081 (2002)

  22. Rezaei, A., Burl, J.B., Zhou, B.: Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles. IEEE Trans. Control Syst. Technol. 26(6), 2198–2205 (2018)

    Article  Google Scholar 

  23. Rong, R., Wang, R..: High efficiency 1.5kW 48V-12V DCDC converter with leadless MOSFET for mild hybrid electric vehicle. In: PCIM Asia 2018: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (2018)

  24. Schneider, J.: 48V Boost Recuperation Systems - Golden Gate into the Future, SAE Technical Paper 2019-01-0391 (2019)

  25. Schöffmann, W., Sorger, H., Weissbäck, M., Pels, T., Kaup, C., Brunner, M.: The tailored powertrain for 48 V—options for the gasoline engine—chance for future Diesel engines. In: Liebl, J., Beidl, C. (eds.) Internationaler Motorenkongress 2017, Proceedings, pp. 261–296. Springer, Fachmedien, Wiesbaden (2017)

  26. SEBoK Editorial Board (ed.): Guide to the System Engineering Body of Knowledge (SEBoK): version 1.9.1. BKCASE Editorial Board, Hoboken (2018)

  27. Sellers, R., Revereault, P., Stalfors, T., Stenfeldt, M.: Optimising the architecture of a 48V mild-hybrid diesel powertrain. In: 26th Aachen Colloquium Automobile and Engine Technology 2017 (2017)

  28. Silvas, E., Hofman, T., Murgovski, N., Etman, P., Steinbuch, M.: Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 66(1), 57–70 (2016)

    Google Scholar 

  29. Skoog, S.: Experimental and model based evaluation of mild hybrid fuel consumption gains and electric machine utilization for personal vehicle application: 7-10 Aug. 2017. In: 2017 IEEE Transportation Electrification Conference and Expo (2017)

  30. Tietge, U., Díaz, S., Mock, P., German, J., Bandivadekar, A., Ligterink, N.: From laboratory to road: a 2016 update of official and real-world fuel consumption and CO2 values for passenger cars in europe. ICCT/TNO White Paper (2016)

  31. Timmann, M., Inderka, R., Eder, T.: Development of 48V powertrain systems at Mercedes-Benz. In: Bargende, M., Reuss, H.C., Wiedemann, J. (eds.) 18. Internationales Stuttgarter Symposium, Proceedings, pp. 567–577. Springer, Fachmedien, Wiesbaden (2018)

  32. Tschöke, H., Gutzmer, P., Pfund, T.: Elektrifizierung des Antriebsstrangs. Springer, erlin, Heidelberg (2019)

    Book  Google Scholar 

  33. Voegler, M., Koenigsstein, A., Fuhrmann, N., Beidl, C., Thiem, M.: Combustion engines for electrified powertrains—systems engineering between efficiency, emission and cost. In: 27th Aachen Colloquium Automobile and Engine Technology 2018 (2018)

  34. Weiß, F.: Optimale Konzeptauslegung elektrifizierter Fahrzeugantriebsstränge. Ph.D. thesis, Technische Universität Chemnitz (2017)

  35. Werner, Q.: Model-based optimization of electrical system in the early development stage of hybrid drivetrains. Ph.D. thesis, Universite de Lorraine (2017)

  36. Werra, M., Küçükay, F.: CO2-analysis and dimensioning of 48V hybrid drivetrains in legal and customer based cycles. In: 28th Aachen Colloquium Automobile and Engine Technology 2019, pp. 1431–1448 (2019)

  37. Xu, N., Kong, Y., Chu, L., Ju, H., Yang, Z., Xu, Z., Xu, Z.: Towards a smarter energy management system for hybrid vehicles: a comprehensive review of control strategies. Appl. Sci. 9(10), 2026 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Förster.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förster, D., Decker, L., Doppelbauer, M. et al. Analysis of \(\hbox {CO}_2\) reduction potentials and component load collectives of 48 V-hybrids under real-driving conditions. Automot. Engine Technol. 6, 45–62 (2021). https://doi.org/10.1007/s41104-021-00076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-021-00076-3

Keywords

Navigation