Skip to main content
Log in

Fully coupled control of a spark-ignited engine in driving cycle simulations

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

The fuel consumption of vehicles with spark-ignited (SI) gasoline engines in transient driving cycles depends greatly on the thermodynamics and its interplay with the calibration of the engine control. For the simulation of these complex phenomena covering engine physics and applied control, a new methodology is presented. A functional model of the engine control unit is introduced together with a driver control. It is coupled to a physical modeling framework consisting of a crank angle-based engine model and a vehicle drivetrain model. As a key feature, a novel predictive SI combustion sub-model is integrated, using quasi-dimensional modeling approaches for flame propagation, turbulence, and ignition delay. In a modular validation process, each sub-model and its interaction in the coupled simulation environment are evaluated successfully. The fully coupled model is then used to predict the fuel consumption in driving cycles under varying calibration strategies of the engine control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Andert, J., Xia, F., Klein, S., Guse, D., Savelsberg, R., Tharmakulasingam, R., Thewes, M., Scharf, J.: Road-to-rig-to-desktop: virtual development using real-time engine modelling and powertrain co-simulation. Int. J. Engine Res. 04, 146808741876722 (2018)

    Google Scholar 

  2. Barasa, P., Tian, Y., Hardes, S., Owlia, S., Limaye, P., Bailey, D., Sehgal, T.: Virtual engine, controls, and calibration development in automated co-simulation environment. SAE Technical Paper 2016-01-0090 (2016)

  3. Blizard, N.C., Keck, J.C.: Experimental and theoretical investigation of turbulent burning model for internal combustion engines. SAE Technical Paper 740191 (1974)

  4. Brand, D., Onder, C., Guzzella, L.: Virtual NO sensor for spark-ignition engines. Int. J. Engine Res. 8(2), 221–240 (2007)

    Article  Google Scholar 

  5. De Bellis, V., Severi, E., Fontanesi, S., Bozza, F.: Hierarchical 1D/3D approach for the development of a turbulent combustion model applied to a VVA turbocharged engine. Part II: combustion model. Energy Proc. 45, 1027–1036 (2014)

    Article  Google Scholar 

  6. D’Errico, G., Ferrari, G., Onorati, A., Cerri, T.: Modeling the pollutant emissions from a S.I. engine. SAE Technical Paper 2002-01-0006 (2002)

  7. Dingel, O., Ross, J., Trivic, I., Cavina, N., Rioli, M.: Model-based assessment of hybrid powertrain solutions. SAE Technical Paper 2011-24-0070 (2011)

  8. Dorsch, M.: Detailed Modeling of SI Engines in Fuel Consumption Simulations for Functional Analysis. Logos, Berlin (2016)

    Google Scholar 

  9. Dorsch, M., Neumann, J., Hasse, C.: Detailed modeling of SI engines in driving cycle simulations for fuel consumption analysis. FISITA Technical Paper F2014-CET-017 (2014)

  10. Dorsch, M., Neumann, J., Hasse, C.: Application of a phenomenological model for the engine-out emissions of unburned hydrocarbons in driving cycles. J. Energy Resour. ASME 138(2), 022201 (2016)

    Article  Google Scholar 

  11. Eriksson, L., Nielsen, L.: Modeling and Control of Engines and Drivelines. Wiley, Hoboken (2014)

    Book  Google Scholar 

  12. Gamma Technologies LLC. GT-SUITE. www.gtisoft.com (2017). Accessed 12 July 2019

  13. Gao, Z., Conklin, J., Daw, C., Chakravarthy, V.: A proposed methodology for estimating transient engine-out temperature and emissions from steady-state maps. Int. J. Engine Res. 11(2), 137–151 (2010)

    Article  Google Scholar 

  14. Ghojel, J.: Review of the development and applications of the Wiebe function: a tribute to the contribution of Ivan Wiebe to engine research. Int. J. Engine Res. 11(4), 297–312 (2010)

    Article  Google Scholar 

  15. Grasreiner, S., Neumann, J., Luttermann, C., Wensing, M., Hasse, C.: A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains. Int. J. Engine Res. 15(7), 805–816 (2014)

    Article  Google Scholar 

  16. Grasreiner, S., Neumann, J., Wensing, M., Hasse, C.: A quasi-dimensional model of the ignition delay for combustion modeling in SI engines. J. Eng. Gas Turbine Power 137(7), 071502 (2015)

    Article  Google Scholar 

  17. Grasreiner, S., Neumann, J., Wensing, M., Hasse, C.: Model-based virtual engine calibration with the help of phenomenological methods for spark-ignited engines. Appl. Therm. Eng. 121, 190–199 (2017)

    Article  Google Scholar 

  18. Grill, M., Billinger, T., Bargende, M.: Quasi-dimensional modeling of spark ignition engine combustion with variable valve train. SAE Technical Paper 2006-01-1107 (2006)

  19. Guerrier, M., Cawsey, P.: The development of model based methodologies for gasoline IC engine calibration. SAE Technical Paper 2004-01-1466 (2004)

  20. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  21. Huang, Z., Pan, K., Li, J., Zhou, L., Jiang, D.: An investigation on simulation models and reduction methods of unburned hydrocarbon emissions in spark ignition engines. Combust. Sci. Technol. 115(1–3), 105–123 (1996)

    Article  Google Scholar 

  22. Irimescu, A., Di Iorio, S., Merola, S.S., Sementa, P., Vaglieco, B.M.: Correlation between simulated volume fraction burned using a quasi-dimensional model and flame area measured in an optically accessible SI engine. SAE Technical Paper 2017-01-0545 (2017)

  23. Isermann, R. (ed.): Engine Modeling and Control. Springer, Berlin (2014)

    Google Scholar 

  24. Kratzsch, M., Günther, M., Elsner, N., Zwahr, S.: Modellansätze für die virtuelle Applikation von Motorsteuergeräten. MTZ-Motortechnische Zeitschrift 70(9), 664–670 (2009)

    Article  Google Scholar 

  25. Lämmle, C.: Numerical and Experimental Study of Flame Propagation and Knock in a Compressed Natural Gas Engine. PhD thesis, ETH Zürich, Switzerland (2005)

  26. Mencher, B., Jessen, H., Kaiser, L., Gerhardt, J.: Preparing for CARTRONIC—interface and new strategies for torque coordination and conversion in a spark ignition engine-management system. SAE Technical Paper 2001-01-0268 (2001)

  27. Merker, G.P., Schwarz, C., Stiesch, G., Otto, F.: Simulating Combustion—Simulation of Combustion and Pollutant Formation for Engine-Development. Springer, Berlin (2006)

    Google Scholar 

  28. Metghalchi, M., Keck, J.C.: Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combust. Flame 48, 191–210 (1982)

    Article  Google Scholar 

  29. Millo, F., Lorenzo, G.D., Servetto, E., Capra, A., Pettiti, M.: Analysis of the performance of a turbocharged S.I. engine under transient operating conditions by means of fast running models. SAE Technical Paper 2013-01-1115 (2013)

  30. Mitts, K.J., Lang, K., Roudier, T., Kiskis, D.L.: Using a co-simulation framework to enable software-in-the-loop powertrain system development. SAE Technical Paper 2009-01-0520 (2009)

  31. Morel, T., Rackmil, C.I., Keribar, R., Jennings, M.J.: Model for heat transfer and combustion in spark ignited engines and its comparison with experiments. SAE Technical Paper 880198 (1988)

  32. Nefischer, A., Neumann, J., Stanciu, A., Wimmer, A.: Quasi-dimensional modeling of turbulence-driven phenomena in SI engines. Int. J. Veh. Des. 66(3), 297–316 (2014)

    Article  Google Scholar 

  33. Nijs, M., Sternberg, P., Wittler, M., Pischinger, S.: Steuergerätefähige Luftpfadmodelle für Ottomotoren mit erweiterter Ventiltriebsvariabilität. MTZ-Motortechnische Zeitschrift 71(11), 824–831 (2010)

    Article  Google Scholar 

  34. Pagerit, S., Roudier, T., Sharer, P., Rousseau, A.: Complex system engineering simulation through co-simulation. SAE Technical Paper 2014-01-1106 (2014)

  35. Santavicca, D.A., Liou, D., North, G.L.: A fractal model of turbulent flame kernel growth. SAE Technical Paper 900024 (1990)

  36. Tabaczynski, R.J., Ferguson, C.R., Radhakrishnan, K.: A turbulent entrainment model for spark-ignition engine combustion. SAE Technical Paper 770647 (1977)

  37. The MathWorks Inc. MATLAB. https://www.mathworks.com (2017). Accessed 12 July 2019

  38. Trapp, C.: Simulation in der Motorentwicklung—Auf dem Weg zur virtuellen Applikation. MTZ-Motortechnische Zeitschrift 69(11), 922–927 (2008)

    Article  Google Scholar 

  39. Vibe, J.I.: Brennverlauf und Kreisprozess von Verbrennungsmotoren. VEB Verlag Technik, Berlin (1970)

    Google Scholar 

  40. Wang, S., Prucka, R., Zhu, Q., Prucka, M., Dourra, H.: A real-time model for spark ignition engine combustion phasing prediction. SAE Int. J. Engines 9(2), 1180–1190 (2016)

    Article  Google Scholar 

  41. Woschni, G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Paper 670931 (1967)

  42. Wurzenberger, J., Bartsch, P., Katrasnik, T.: Crank-angle resolved real-time capable engine and vehicle simulation—fuel consumption and driving performance. SAE Technical Paper 2010-01-0784 (2010)

  43. Xiao, B., Wang, S., Prucka, R.: Virtual combustion phasing target correction in the knock region for model-based control of multi-fuel SI engines. SAE Int. J. Engines 6(1), 228–236 (2013)

    Article  Google Scholar 

  44. Zschutschke, A., Neumann, J., Linse, D., Hasse, C.: A systematic study on the applicability and limits of detailed chemistry based NOx models for simulations of the entire engine operating map of spark-ignition engines. Appl. Therm. Eng. 98, 910–923 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Parts of the presented results were gathered during a Ph.D. scholarship at BMW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Dorsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorsch, M., Neumann, J. & Hasse, C. Fully coupled control of a spark-ignited engine in driving cycle simulations. Automot. Engine Technol. 4, 125–137 (2019). https://doi.org/10.1007/s41104-019-00050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-019-00050-0

Keywords

Navigation