Skip to main content
Log in

Performance and Kinetics Evaluation of Integrated Suspended Growth Bioreactor Treating Beverage Industry Wastewater

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

In this research, feasibility of using a continuous flow integrated suspended growth bioreactor (i-SGBR) pilot plant was explored to treat beverage industry wastewater. The bioreactor treatment units comprise of three sequentially arranged suspended growth bioreactors with anoxic (ANX-C), aerobic (AER-C), and aerobic digester chambers (AD-C). Clarifier (CLR) was installed as last chamber to settle sludge. Parameters such as total chemical oxygen demand (TCOD) were monitored and validated with biochemical oxygen demand (BOD5). Other parameters measured include soluble COD (sCOD), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), total suspended solids (TSS), and pH. Transformational behavior of aerobic metabolic performance for extended aeration process was investigated by operating regimes of variable aerobic hydraulic retention time (HRT) and organic loading rate (OLR) between 20 and 30 h and 0.49–0.79 kg COD/m3 day, respectively. Solids retention time (SRT) between 20 and 40 days was operated. The aim was to generate data for bacterial growth and substrate utilization kinetics from modified Monod’s model. Removal of TCOD, BOD5, and TSS were achieved in the range of 95.2–97.9% (Influent 995 ± 21–1028 ± 25 mg/L and Effluent 21 ± 2–4.9 ± 3 mg/L), 98–98.7% (Influent 489 ± 19–507 ± 7 mg/L and Effluent 27 ± 2–41 ± 1.8 mg/L), and 91.2–94.6% (Influent 500 ± 23–653 ± 11 mg/L and Effluent 6.3 ± 7–41 ± 1.8 mg/L), respectively. The maximum substrate utilization rate (k), half velocity constant (Ks), growth yield co-efficient (Y), and decay coefficients (kd) were determined as 2.81 days−1, 979 mg sCOD/L, 0.72 mg VSS/mg sCOD, and − 0.0172 day−1, respectively. Maximum specific growth rate (μmax) was found as 2.03 days−1. Treatment efficiencies declined with reduction of HRT and with increased OLR applied to the bioreactor. The aerobic digester (AD) achieved between 9.8% (Influent 15,021 mg/L) and 18.6% (10,893 mg/L) MLVSS reduction, where performance decreased with additional solids concentration from influent aerobic digester (IAD). i-SGBR has accomplished effective removal of pollutants and simultaneous sludge degradation of beverage industry wastewater. Kinetic parameters obtained could be useful for design and modeling of aerobic treatment unit to improve effluent quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abidin R, Abdullah CS, Osman WN (2010) Clean production strategies adoption: a survey on food and beverage manufacturing sector, vol 2010. IBIMA publishing, King of Prussia, p 10. Available: http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

  2. Al-Malack MH (2006) Determination of biokinetic coefficients of an immersed membrane bioreactor. J Membr Sci 271(1):47–58

    Article  CAS  Google Scholar 

  3. Ammary BY (2004) Nutrients requirements in biological industrial wastewater treatment. Afr J Biotechnol 3(4):236–238

    Article  CAS  Google Scholar 

  4. Anderson, B., Mavinic, D. (1984) Aerobic sludge digestion with pH control-preliminary investigation. J Water Pollut Control Fed 889–897

  5. An JY, Kwon JC, Ahn DW., Shin HS, Won SH, Kim BW (2008) Performance of a full-scale biofilm system retrofitted with an upflow multilayer bioreactor as a preanoxic reactor for advanced wastewater treatment. Water Environ Res 80(8):757-765

    Article  CAS  Google Scholar 

  6. Andrews J (1992) Mathematical modeling and computer simulation. In: Andrews JF (ed) Dynamics and Control of the Activated Sludge Process. Technomic Inc., Lancaster

    Google Scholar 

  7. Arvanitoyannis IS (2010) Waste management for the food industries. Elsevier Inc., Oxford, p 413–452

    Chapter  Google Scholar 

  8. Baeza J, Gabriel D, Lafuente J (2004) Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A 2/O) wastewater treatment plant (WWTP). Process Biochem 39(11):1615–1624

    Article  CAS  Google Scholar 

  9. Beck M (1986) Identification, estimation and control of biological waste-water treatment processes. Paper presented at the IEE Proceedings D-Control Theory and Applications

  10. Beltrán FJ, García-Araya JF, Álvarez PM (2000) Estimation of biological kinetic parameters from a continuous integrated ozonation-activated sludge system treating domestic wastewater. Biotechnol Prog 16(6):1018–1024

    Article  Google Scholar 

  11. Benefield LD, Randall CW, (1980) Biological process design for wastewater treatment. Prentice-Hall, New Jersey, p 526

  12. Benitez FJ, Beltran-Heredia J, Real FJ, Gonzalez T (1999) Aerobic and anaerobic purification of wine distillery wastewater in batch reactors. Chem Eng Technol 22(2):165–172

    Article  CAS  Google Scholar 

  13. Bernard S, Gray N (2000) Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature. Water Res 34(3):725–734

    Article  CAS  Google Scholar 

  14. C, K. J., Ahn D. W., Kim B W., Suh C. W., & S, S. H. (2006). Biological nutrient removal in pilot-scale KNR (R) system with UMBR (Upflow multi-layer bioreactor) and aerobic reactor. Proceedings of CAFEO 24, 2006, Bandar Sunway, Selagor, Malaysia

  15. Carta-Escobar F, Pereda-Marin J, Alvarez-Mateos P, Romero-Guzman F, Barrantes MD (2005) Aerobic purification of dairy wastewater in continuous regime: part II: kinetic study of the organic matter removal in two reactor configurations. Biochem Eng J 22(2):117–124

    Article  CAS  Google Scholar 

  16. Chakraborty S, Veeramani H (2006) Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic–anoxic–aerobic continuous system. Process Biochem 41(1):96–105

    Article  CAS  Google Scholar 

  17. Chan YJ, Chong MF, Law CL, Hassell D (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155:1), 1–1),18

    Article  Google Scholar 

  18. Cicek N (2003) A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can Biosyst Eng 45:6.37–36.37

    Google Scholar 

  19. Dai H, Yang X, Dong T, Ke Y, Wang T (2010) Engineering application of MBR process to the treatment of beer brewing wastewater. Mod Appl Sci 4(9):103

    Article  CAS  Google Scholar 

  20. Davies PS (2005) The biological basis of wastewater treatment. Ph.D. Strathkelvin Ins. Ltd, Glasgow, p 20

  21. Degenaar A, Ismail A, Bux F (2008) Comparative evaluation of the microbial community in biological processes treating industrial and domestic wastewaters. J Appl Microbiol 104(2):353–363

    CAS  Google Scholar 

  22. Ding A, Qu F, Liang H, Ma J, Han Z, Yu H, … Li G (2013) A novel integrated vertical membrane bioreactor (IVMBR) for removal of nitrogen from synthetic wastewater/domestic sewage. Chem Eng J, 223, 908–914

    Article  CAS  Google Scholar 

  23. DOE (2009a) Department of Environment, Environmental Quality (Industrial) Regulations 2009, Environmental Quality Act (EQA) 1974, Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulations Malaysia

  24. DOE. (2009b) Environmental quality (sewage ) regulations 2009, environmental quality act 1974, environmental quality (control of pollution from solid waste transfer station and landfill) regulations 2009. Malaysia

  25. DoE (2010) Department of Environment, Ministry of Natural Resources and Environment, Environmental Requirements: a Guide For Investors, Eleventh Edition, October 2010

  26. Eckenfelder WW (2007) Wastewater treatment. In: Kirk ER, Othmer DF, Kroschwitz JI, Howe-Grant M (eds) Kirke-Othmer Encyclopedia Chemical Technology. John Wiley & Sons, New York

  27. El-Kamah H, Mahmoud M (2012) Performance evaluation of sequencing batch reactor for beverage industrial wastewater treatment. Water Environ Res 84(2):155–161

    Article  CAS  Google Scholar 

  28. El-Kamah H, Tawfik A, Mahmoud M, Abdel-Halim H (2010) Treatment of high strength wastewater from fruit juice industry using integrated anaerobic/aerobic system. Desalination 253(1):158–163

    Article  CAS  Google Scholar 

  29. Falås P, Longrée P, la Cour Jansen J, Siegrist H, Hollender J, Joss A (2013) Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Res 47(13):4498–4506

    Article  Google Scholar 

  30. Federation, W. E., & Association, A. P. H (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington

    Google Scholar 

  31. Futselaar H, Rosink R, Smith G, Koens L (2013) The anaerobic MBR for sustainable industrial wastewater management. Desalin Water Treat 51(4–6):1070–1078

    Article  CAS  Google Scholar 

  32. Garbossa L, Lapa K, Zaiat M, Foresti E (2005) Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage. Braz J Chem Eng 22(4):511–519

    Article  CAS  Google Scholar 

  33. Gerardi M (2002) Nitrification and denitrification in the activated sludge process. Environmental Protection Magazine Series

  34. Ghafari S, Hasan M, Aroua MK (2009) Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria. J Hazard Mater 162(2):1507–1513

    Article  CAS  Google Scholar 

  35. Gizgis N, Georgiou M, Diamadopoulos E (2006) Sequential anaerobic/aerobic biological treatment of olive mill wastewater and municipal wastewater. J Chem Technol Biotechnol 81(9):1563–1569

    Article  CAS  Google Scholar 

  36. Gohil A, Nakhla G (2006) Treatment of food industry waste by bench-scale upflow anaerobic sludge blanket-anoxic-aerobic system. Water Environ Res 78:974–985

    Article  CAS  Google Scholar 

  37. Grady C Jr, Filipe C (2000) Ecological engineering of bioreactors for wastewater treatment. In: Belkin S (ed) Environmental challenges. Springer, Dordrecht, pp. 117-132. https://doi.org/10.1007/978-94-011-4369-1

    Google Scholar 

  38. Grady C Jr, Daigger G, Love N, Filipe C (2011) Biological wastewater treatment, 3rd ed. IWA publishing, CRC press

  39. Gray NF (2005) Water technology: an introduction for environmental scientists and engineers. Elsevier, Oxford

    Book  Google Scholar 

  40. Guerrero L, Omil F, Mendez R, Lema J (1999) Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Res 33(15):3281–3290

    Article  CAS  Google Scholar 

  41. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2(16):6380–6388

    Article  CAS  Google Scholar 

  42. Henze M (1992) Characterization of wastewater for modelling of activated sludge processes. Water Sci Technol 25(6):1–15

    Article  CAS  Google Scholar 

  43. Henze M, Gujer W, Mino T, Matsuo T, Wentzel MC, vR Marais G, Van Loosdrecht MC (1999) Activated sludge model no. 2d, ASM2d. Water Sci Technol 39(1):165–182

    Article  CAS  Google Scholar 

  44. Huang J-S, Chou H-H, Chen C-M, Chiang C-M (2007) Effect of recycle-to-influent ratio on activities of nitrifiers and denitrifiers in a combined UASB–activated sludge reactor system. Chemosphere 68(2):382–388

    Article  CAS  Google Scholar 

  45. Judd S (2011) The MBR book: principles and application of membrane bioreactors in water and wastewater treatment, 2nd ed. Elsevier Ltd., Amsterdam

  46. Kim J, Novak JT (2011) Combined anaerobic/aerobic digestion: effect of aerobic retention time on nitrogen and solids removal. Water Environ Res 83(9):802–806

    Article  CAS  Google Scholar 

  47. Kim YM, Park D, Jeon CO, Lee DS, Park JM (2008) Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater. Bioresour Technol 99(18):8824–8832

    Article  CAS  Google Scholar 

  48. Koers DA (1979) Studies of the control and operation of the aerobic digestion process applied to waste activated sludge at low temperatures. Ph.D. Dissertation, University of British Columbia, Vancouver, B. C., p 288

  49. Konsortium IW (2008) Corporate sustainability report 2007: 13 years of environmental accomplishments, Malaysia. Available: http://www.iwk.com.my/cms/upload_files/resource/sustainabilityreport/sustainabilityreport2007.pdf

  50. Kotsanopoulos KV, Arvanitoyannis IS (2015) Membrane processing Technology in the Food Industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods. Crit Rev Food Sci Nutr 55(9):1147–1175

    Article  CAS  Google Scholar 

  51. Lawrence AW, McCarthy P (1970) Unified basis for biological treatment design and operation. J. of Sanitary Eng. Div. ASCE, SA3 (1970):757–778

  52. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682

    Article  CAS  Google Scholar 

  53. Ling TY, Siew TF, Lee N (2010) Quantifying pollutants from household wastewater in Kuching, Malaysia. World Appl Sci J 8(4):449–456

  54. Ling T-Y, Siew T-F, Lee N (2010) Quantifying pollutants from household wastewater in Kuching, Malaysia. World Applied Sciences Journal 8(4):449–456

    CAS  Google Scholar 

  55. Liu Y (2003) Chemically reduced excess sludge production in the activated sludge process. Chemosphere 50(1):1–7

    Article  CAS  Google Scholar 

  56. Liu G, Xu X, Zhu L, Xing S, Chen J (2013) Biological nutrient removal in a continuous anaerobic–aerobic–anoxic process treating synthetic domestic wastewater. Chem Eng J 225:223–229

    Article  CAS  Google Scholar 

  57. Mahmood T, Elliott A (2006) A review of secondary sludge reduction technologies for the pulp and paper industry. Water Res 40(11):2093–2112

    Article  CAS  Google Scholar 

  58. Mardani S, Mirbagheri A, Amin M, Ghasemian M (2011) Determination of bio-kinetic co-efficients for activated sludge process on municipal wastewater. Iran J Environ Health Sci Eng 8(3):255–264

  59. Martín de la Vega P, Jaramillo M, Martínez de Salazar E (2013) Upgrading the biological nutrient removal process in decentralized WWTPs based on the intelligent control of alternating aeration cycles. Chem Eng J 232:213–220

    Article  Google Scholar 

  60. Mazioti AA, Stasinakis AS, Pantazi Y, Andersen HR (2015) Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems. Bioresour Technol 192:627–635

    Article  CAS  Google Scholar 

  61. Metcalf & Eddy (2003) Wastewater engineering. Mc Graw Hill, Treatment and Reuse

    Google Scholar 

  62. Monod J (1949) The growth of bacterial cultures. Annual Reviews in Microbiology 3(1):371–394

    Article  CAS  Google Scholar 

  63. Mutamim NSA, Noor ZZ, Hassan MAA, Yuniarto A, Olsson G (2013) Membrane bioreactor: applications and limitations in treating high strength industrial wastewater. Chem Eng J 225:109–119

    Article  CAS  Google Scholar 

  64. Najafpour G, Sadeghpour M, Lorestani ZA (2007) Determination of kinetic parameters in activated sludge process for domestic wastewater treatment plant. Chem Ind Chem Eng Q 13(4):211–215

    Article  CAS  Google Scholar 

  65. Nakhla G, Liu V, Bassi A (2006) Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater. Bioresour Technol 97(1):131–139

    Article  CAS  Google Scholar 

  66. Oakley SM, Gold AJ, Oczkowski AJ (2010) Nitrogen control through decentralized wastewater treatment: process performance and alternative management strategies. Ecol Eng 36(11):1520–1531. https://doi.org/10.1016/j.ecoleng.2010.04.030

    Article  Google Scholar 

  67. Ono Y, Somiya I, Oda Y (2000) Identification of a carcinogenic heterocyclic amine in river water. Water Res 34(3):890–894

    Article  CAS  Google Scholar 

  68. Pala A, Bölükbaş Ö (2005) Evaluation of kinetic parameters for biological CNP removal from a municipal wastewater through batch tests. Process Biochem 40(2):629–635

    Article  CAS  Google Scholar 

  69. Raj DSS, Anjaneyulu Y (2005) Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment. Process Biochem 40(1):165–175

    Article  Google Scholar 

  70. Romero L, Sales D, Cantero D, Galan M (1988) Thermophilic anaerobic digestion of winery waste (vinasses): kinetics and process optimization. Process Biochem

  71. Roš M, Zupančič GD (2002) Thermophilic aerobic digestion of waste activated sludge. Acta Chim Slov 49:931–943

    Google Scholar 

  72. Song K-G, Cho J, Ahn K-H (2009) Effects of internal recycling time mode and hydraulic retention time on biological nitrogen and phosphorus removal in a sequencing anoxic/anaerobic membrane bioreactor process. Bioprocess Biosyst Eng 32(1):135–142

    Article  Google Scholar 

  73. Spellman F (2003) Handbook of water and wastewater treatment plant operations. CRC Press, Boca Raton, p 491

  74. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater Engineering, Treatment and Reuse, 4th ed., McGraw Hill, NewYork

  75. Tchobanoglous G, Stensel D, Tsuchihashi R, Burton F, Mohammad A, Bowden G, Pfrang W (2014) Wastewater engineering: treatment and resource recovery. Metcalf & Eddy, Inc: McGraw-Hill, New York

  76. Vermande S, Sötemann S, Soriano GA, Wentzel M, Audic J, Ekama G (2002) Comparison of aerobic and anoxic phosphorus uptake in NDBEPR systems (UCT and ENBNRAS). Water Sci Technol 46(4–5):201–207

    Article  CAS  Google Scholar 

  77. Viero AF, Sant’Anna GL (2008) Is hydraulic retention time an essential parameter for MBR performance? J Hazard Mater 150(1):185–186

    Article  CAS  Google Scholar 

  78. Wang Q, Feng C, Zhao Y, Hao C (2009a) Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresour Technol 100(7):2223–2227

    Article  CAS  Google Scholar 

  79. Wang R-M, Wang Y, Ma G-P, He Y-F, Zhao Y-Q (2009b) Efficiency of porous burnt-coke carrier on treatment of potato starch wastewater with an anaerobic–aerobic bioreactor. Chem Eng J 148(1):35–40

    Article  CAS  Google Scholar 

  80. Wattanapinyo A, Mol AP (2013) Ecological modernization and environmental policy reform in Thailand: the case of food processing SMEs. Sustain Dev 21(5):309–323

    Article  Google Scholar 

  81. Wei C, Zhang T, Feng C, Wu H, Deng Z, Wu C, Lu B (2011) Treatment of food processing wastewater in a full-scale jet biogas internal loop anaerobic fluidized bed reactor. Biodegradation 22(2):347–357

    Article  CAS  Google Scholar 

  82. Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol 102(9):5353–5360

    Article  CAS  Google Scholar 

  83. Yang Z, Zhou S (2008) The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. Chemosphere 72(11):1751–1756

    Article  CAS  Google Scholar 

  84. Yang W, Cicek N, Ilg J (2006) State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. J Membr Sci 270(1):201–211

    Article  CAS  Google Scholar 

  85. Zeng W, Li L, Yang YY, Wang XD, Peng YZ (2011) Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater. Enzym Microb Technol 48(2):134–142. https://doi.org/10.1016/j.enzmictec.2010.10.010

    Article  CAS  Google Scholar 

  86. Zhang Y, Jiti Z, Zhang J, Shouzhi Y (2009) An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification. J Environ Sci 21(5):568–574

    Article  CAS  Google Scholar 

  87. Zupančič GD, Roš M (2008) Aerobic and two-stage anaerobic–aerobic sludge digestion with pure oxygen and air aeration. Bioresour Technol 99(1):100–109

    Article  Google Scholar 

Download references

Funding

This research is funded by the Ministry of Higher Education for Prototype Research Grant Scheme (PRGS, PRGS/1/13/STWNO1/UTP/02/01) and Universiti Teknologi PETRONAS (UTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasiru Aminu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminu, N., Kutty, S.R.M., Isa, M.H. et al. Performance and Kinetics Evaluation of Integrated Suspended Growth Bioreactor Treating Beverage Industry Wastewater. Water Conserv Sci Eng 3, 235–252 (2018). https://doi.org/10.1007/s41101-018-0054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-018-0054-6

Keywords

Navigation