Skip to main content
Log in

Modeling Structural Breaks in Disturbances Precision or Autoregressive Parameter in Dynamic Model: A Bayesian Approach

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

The focus of this paper is the examination of dynamic models in the presence of structural changes either due to disturbances precision or autoregressive parameter under the Bayesian framework. The Bayesian analysis of the dynamic model has been carried out under the mixture of prior distributions for the parameters. The posterior distribution of parameters is derived to obtain Bayes estimators under quadratic loss function ignoring the possibility of structural breaks in regression coefficients. The posterior odds ratio has been developed under the assumption that disturbance precision leads to structural change as against the autoregressive parameter. The theoretical framework is also empirically tested employing data set of Indian companies considering financial variables like debt, profitability, investment etc.; covering the global financial crisis (GFC) period. The empirical exercise carried out highlights 2008–09 as the major structural breakpoint when many Indian companies suffered losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banerjee A, Marcellino M (2009) Factor augmented error correction models. In: Castle JL, Shephard N (eds) The methodology and practice of econometrics-a Festschrift for David Hendry. Oxford University Press, pp 227–254

    Chapter  Google Scholar 

  • Breitung J, Eickmeier S (2011) Testing for structural breaks in dynamic factor models. J Econom 163:71–84

    Article  MathSciNet  Google Scholar 

  • Broemeling LD (1972) Bayesian procedures for detecting a change in a sequence of random variables. Metron 30:1–14

    Google Scholar 

  • Broemeling LD, Tsurumi H (1987) Econometrics and structural change. Marcel Dekker, New York

    MATH  Google Scholar 

  • Chaturvedi A, Shrivastava A (2016) Bayesian analysis of a linear model involving structural changes in either regression parameters or disturbances precision. Commun Stat Theory Methods 45:307–320

    Article  MathSciNet  Google Scholar 

  • Choy JHC, Broemeling LD (1980) Some Bayesian inferences for a changing linear model. Technimetrics 22:71–78

    Article  MathSciNet  Google Scholar 

  • Choy JHC (1977) A Bayesian analysis of a changing linear model. Doctoral dissertation, Oklahoma State University, Stillwater, Oklahoma

  • Dadashova B, Arena B, José J, Aparicio F (2014) Bayesian model selection of structural explanatory models: application to road accident data. Proc Soc Behav Sci 160:55–63

    Article  Google Scholar 

  • del Negro M, Otrok C (2008) Dynamic factor models with time-varying parameters: measuring changes in international business cycles. Federal Reserve Bank of New York Staff Report No. 326, May 2008

  • Friel N, Pettitt AQN (2008) Marginal likelihood estimation via power posteriors. J R Stat Soc B 70:589–607

    Article  MathSciNet  Google Scholar 

  • Gelman A, Meng X (1998) Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci 13:163–185

    Article  MathSciNet  Google Scholar 

  • Han C, Carlin BP (2001) Markov Chain Monte Carlo methods for computing Bayes factors: a comparative review. J Am Stat Assoc 96:1122–1132

    Article  Google Scholar 

  • Hansen BE (2001) The new econometrics of structural change: dating breaks in U.S. labor productivity. J Econ Perspect 15:117–128

    Article  Google Scholar 

  • Holbert D, Broemeling LD (1977) Bayesian inference related to shifting sequences and two-phase regression. Commun Stat Theory Methods 6:265–275

    Article  MathSciNet  Google Scholar 

  • Holbert D (1973) A Bayesian analysis of shifting sequences with applications to two phase regression. Doctoral dissertation, Oklahoma State University, Stillwater, Oklahoma

  • Inclan C, Tiao GC (1994) Use of cumulative sums of squares for retrospective detection of changes in variance. J Am Stat Assoc 89:913–923

    MATH  Google Scholar 

  • Kim J, Morley J, Piger J (2004) A Bayesian approach to counterfactual analysis of structural change. Working Paper 2004-014D, July 2004, revised June 2006, Federal Reserve Bank of St. Louis. http://research.stlouisfed.org/wp/2004/2004-014.pdf

  • Ng VM (1990) Bayesian analysis of linear models exhibiting changes in mean and precision at an unknown time point. Commun Stat Theory Methods 19:111–120

    Article  MathSciNet  Google Scholar 

  • Poirier DH (1976) The econometrics of structural change. North-Holland Publishing Co., Amsterdam

    MATH  Google Scholar 

  • Quandt RE (1972) A new approach to estimating switching regressions. J Am Stat Assoc 67:306–310

    Article  Google Scholar 

  • Quandt RE (1974) A comparison of methods for testing non-nested hypotheses. Rev Econ Stat 56:92–99

    Article  Google Scholar 

  • Salazar D, Broemeling L, Chi A (1981) Parameter changes in a regression model with auto correlated errors. Commun Stat Theory Methods 10:1751–1758

    Article  Google Scholar 

  • Salazar D (1980) The analysis of structural changes in time series and multivariate linear models. Doctoral dissertation. Oklahoma State University, Stillwater, Oklahoma

  • Slama A, Saggou H (2017) A Bayesian analysis of a change in the parameters of autoregressive time series. Commun Stat Comput Simul 46:7008–7021

    Article  MathSciNet  Google Scholar 

  • Smith AFM (1975) A Bayesian approach to inference about a change point in a sequence of random variables. Biometrika 62:407–416

    Article  MathSciNet  Google Scholar 

  • Smith AFM (1980) Change-point problems: approaches and applications. In: Bernardo JM (ed) Bayesian statistics. University Press, Valencia, pp 83–98

    Google Scholar 

  • Smith AFM (1977) A Bayesian analysis of sometime-varying models. In: Barra JR et al (eds) Recent developments in statistics. North-Holland Publishing Company, Amsterdam, pp 257–267

    Google Scholar 

  • Stock JH, Watson MW (2002) Macroeconomic forecasting using diffusion indexes. J Bus Econ Stat 20:147–162

    Article  MathSciNet  Google Scholar 

  • Tsurumi H (1977) A Bayesian test of a parameter shift with an application. J Econom 6:371–380

    Article  MathSciNet  Google Scholar 

  • Tsurumi H (1978) A Bayesian test of a parameter shift in a simultaneous equation with an application to a macro savings function. Econ Stud Q 24:216–230

    Google Scholar 

  • Tsurumi H (1980) A Bayesian estimation of structural shifts by gradual switching regression with an application to the US gasoline market. In: Zellner A (ed) Bayesian analysis in econometrics and statistics: essays in honor of Harold Jeffreys. North-Holland Publishing Company, Amsterdam, pp 213–240

    Google Scholar 

  • Wang J, Zivot E (2000) A Bayesian time series model of multiple structural changes in level, trend and variance. J Bus Econ Stat 18:374–386

    Google Scholar 

  • Yu-Ming CA (1979) The Bayesian analysis of structural change in linear models. Doctoral dissertation, Oklahoma State University, Stillwater, Oklahoma

  • Zellner A (1971) An introduction to Bayesian inference in econometrics. Wiley, New York

    MATH  Google Scholar 

Download references

Funding

The research is not supported by any research grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Chaturvedi.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Derivation of Conditional posterior distribution of \({\varvec{\uprho}}\) given \(\left({\varvec{\upbeta}},{\varvec{\upvartheta}},{\varvec{\updelta}}\right)\) :

Let us write

$${\mathfrak{z}}_{t}\left(\beta \right)={y}_{t}-{x}_{t}^{^{\prime}}\beta .$$

Further, we define

$${\widehat{\rho }}^{*}\equiv {\widehat{\rho }}^{*}\left(\beta ,\vartheta \right)=\frac{{B}_{1}}{{A}_{1}},$$
$${A}_{1}\equiv {A}_{1}(\beta )=\sum_{t=1}^{n}{\mathfrak{z}}_{t-1}^{2}\left(\beta \right)$$
$${B}_{1}\equiv {B}_{1}(\beta ,\vartheta )=\sum_{t=1}^{{n}_{1}}{\mathfrak{z}}_{t}\left(\beta \right){\mathfrak{z}}_{t-1}\left(\beta \right)+\sum_{t={n}_{1}+1}^{n}\left({\mathfrak{z}}_{t}\left(\beta \right)-\vartheta {\mathfrak{z}}_{t-1}\left(\beta \right)\right){\mathfrak{z}}_{t-1}\left(\beta \right)$$
$${\phi }_{1}\left(\beta ,\vartheta \right)=\sum_{t=1}^{{n}_{1}}{{\mathfrak{z}}_{t}}^{2}\left(\beta \right)+\sum_{t={n}_{1}+1}^{n}{\left({\mathfrak{z}}_{t}\left(\beta \right)-\vartheta {\mathfrak{z}}_{t-1}\left(\beta \right)\right)}^{2}-\frac{{B}_{1}^{2}}{{A}_{1}}$$
$$\widehat{\rho }\equiv \widehat{\rho }\left(\beta ,\delta \right)=\frac{{B}_{2}}{{A}_{2}},$$
$${A}_{2}\equiv {A}_{2}\left(\beta ,\delta \right)=\sum_{t=1}^{{n}_{1}}{\mathfrak{z}}_{t-1}^{2} \left(\beta \right)+\delta \sum_{t={n}_{1}+1}^{n}{\mathfrak{z}}_{t-1}^{2} \left(\beta \right),$$
$${B}_{2}\equiv {B}_{2}\left(\beta ,\delta \right)=\sum_{t=1}^{{n}_{1}}{\mathfrak{z}}_{t}\left(\beta \right){\mathfrak{z}}_{t-1}\left(\beta \right)+\delta \sum_{t={n}_{1}+1}^{n}{\mathfrak{z}}_{t}\left(\beta \right){\mathfrak{z}}_{t-1}\left(\beta \right)$$
$${\phi }_{2}\left(\beta ,\delta \right)=\sum_{t=1}^{{n}_{1}}{{\mathfrak{z}}_{t}}^{2}\left(\beta \right)+\delta \sum_{t={n}_{1}+1}^{n}{{\mathfrak{z}}_{t}}^{2}\left(\beta \right)-\frac{{B}_{2}^{2}}{{A}_{2}},$$

The likelihood function (9) can be written as

$$p\left(y|X,\beta ,\tau ,\delta ,\rho ,\vartheta \right)$$
$$=\left(1-\epsilon \right){\left(\frac{\tau }{2\pi }\right)}^\frac{n}{2}exp\left[-\frac{\tau }{2}\left\{\sum_{t=1}^{{n}_{1}}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\rho {\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}+\sum_{t={n}_{1}+1}^{n}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\left(\rho +\vartheta \right){\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}\right\}\right]$$
$$+\epsilon {\delta }^{\frac{{n}_{2}}{2}}{\left(\frac{\tau }{2\pi }\right)}^\frac{n}{2}exp\left[-\frac{\tau }{2}\left\{\sum_{t=1}^{{n}_{1}}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\rho {\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}+\delta \sum_{t={n}_{1}+1}^{n}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\rho {\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}\right\}\right]$$
(33)

Notice that the first part of the likelihood function with \(\left(1-\epsilon \right)\) gives the likelihood under model \({M}_{1}\), whereas the second part with \(\epsilon\) gives the likelihood function under model \({M}_{2}\). For obtaining the conditional \(\uprho\) given \(\left(\upbeta ,\updelta ,\mathrm{\vartheta }\right)\), combining the likelihood under the model \({M}_{1}\) with the prior distributions \(p\left(\rho |\vartheta \right), p\left(\tau \right)\), and integrating with respect to \(\tau\) we obtain

$${\pi }_{1}\left(\rho |\beta ,\delta ,\vartheta \right)$$
$$\propto \frac{1}{1-\vartheta }{\int }_{0}^{\infty }{\tau }^{\frac{n}{2}-1}exp\left[-\frac{\tau }{2}\left\{\sum_{t=1}^{{n}_{1}}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\rho {\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}+\sum_{t={n}_{1}+1}^{n}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\left(\rho +\vartheta \right){\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}\right\}\right]d\tau$$

We observe that

$$\sum_{t=1}^{{n}_{1}}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\rho {\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}+\sum_{t={n}_{1}+1}^{n}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\left(\rho +\vartheta \right){\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}$$
$$={\rho }^{2}\sum_{t=1}^{n}{\mathfrak{z}}_{t-1}{\left(\beta \right)}^{2}-2\rho \left\{\sum_{t=1}^{{n}_{1}}{\mathfrak{z}}_{t}\left(\beta \right){\mathfrak{z}}_{t-1}\left(\beta \right)+\sum_{t={n}_{1}+1}^{n}\left({\mathfrak{z}}_{t}\left(\beta \right)-\vartheta {\mathfrak{z}}_{t-1}\left(\beta \right)\right){\mathfrak{z}}_{t-1}\left(\beta \right)\right\}+\sum_{t=1}^{{n}_{1}}{\mathfrak{z}}_{t}{\left(\beta \right)}^{2}+\sum_{t={n}_{1}+1}^{n}{\left({\mathfrak{z}}_{t}\left(\beta \right)-\vartheta {\mathfrak{z}}_{t-1}\left(\beta \right)\right)}^{2}$$
$$={\left(\rho -{\widehat{\rho }}^{*}\right)}^{2}{A}_{1}+{\phi }_{1}(\beta ,\vartheta )$$

Hence, we obtain

$${\pi }_{1}\left(\rho |\beta ,\vartheta \right)$$
$$\propto \frac{1}{1-\vartheta }{\int }_{0}^{\infty }{\tau }^{\frac{n}{2}-1}exp\left[-\frac{\tau }{2}\left\{{\left(\rho -{\widehat{\rho }}^{*}\right)}^{2}{A}_{1}+{\phi }_{1}\left(\beta ,\vartheta \right)\right\}\right]d\tau$$
$$\propto \frac{1}{1-\vartheta }\frac{1}{{\left\{{\left(\rho -{\widehat{\rho }}^{*}\right)}^{2}{A}_{1}+{\phi }_{1}\left(\beta ,\vartheta \right)\right\}}^\frac{n}{2}}.$$

Therefore

$${\pi }_{1}\left(\rho |\beta ,\delta ,\vartheta \right)={C}_{1\rho }^{-1}\frac{1}{1-\vartheta }\frac{1}{{\left\{{\left(\rho -{\widehat{\rho }}^{*}\right)}^{2}{A}_{1}+{\phi }_{1}\left(\beta ,\vartheta \right)\right\}}^\frac{n}{2}},$$
(34)

where

$${C}_{1\rho }=\frac{1}{1-\vartheta }{\int }_{0}^{1-\vartheta }\frac{1}{{\left\{{\left(\rho -{\widehat{\rho }}^{*}\right)}^{2}{A}_{1}+{\phi }_{1}\left(\beta ,\vartheta \right)\right\}}^\frac{n}{2}}d\rho$$
$$=\frac{\mathrm{\rm B}\left(\frac{1}{2},\frac{n-1}{2}\right)}{\left(1-\vartheta \right){\phi }_{1}{\left(\beta ,\vartheta \right)}^{\frac{n-1}{2}}{A}_{1}^\frac{1}{2}}{\int }_{-\widehat{\rho }\sqrt{\frac{\left(n-1\right){A}_{1}}{{\phi }_{1}\left(\beta ,\vartheta \right)}}}^{\left(1-\vartheta -\widehat{\rho }\right)\sqrt{\frac{\left(n-1\right){A}_{1}}{{\phi }_{1}\left(\beta ,\vartheta \right)}}}{f}_{n-1}\left(t\right)dt$$
$$=\frac{\mathrm{\rm B}\left(\frac{1}{2},\frac{n-1}{2}\right)}{\left(1-\vartheta \right){\phi }_{1}{\left(\beta ,\vartheta \right)}^{\frac{n-1}{2}}{A}_{1}^\frac{1}{2}}\left[{F}_{n-1}\left(\left(1-\vartheta -\widehat{\rho }\right)\sqrt{\frac{\left(n-1\right){A}_{1}}{{\phi }_{1}\left(\beta ,\vartheta \right)}}\right)+{F}_{n-1}\left(\widehat{\rho }\sqrt{\frac{\left(n-1\right){A}_{1}}{{\phi }_{1}\left(\beta ,\vartheta \right)}}\right)-1\right],$$
(35)

where \({f}_{n-1}\left(t\right)\) and \({F}_{n-1}(t)\) denote, respectively, the pdf and cdf of t-distribution with (n − 1) degrees of freedom.

Further, we have

$$\sum_{t=1}^{{n}_{1}}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\rho {\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}+\delta \sum_{t={n}_{1}+1}^{n}{\left\{{\mathfrak{z}}_{t}\left(\beta \right)-\rho {\mathfrak{z}}_{t-1}\left(\beta \right)\right\}}^{2}={A}_{2}{\left(\rho -\widehat{\rho }\right)}^{2}+{\phi }_{2}\left(\beta ,\delta \right)$$

Hence, under model \({M}_{2}\) the posterior density of \(\rho\) given \((\beta ,\delta )\) is

$${\pi }_{2}\left(\rho |\beta ,\delta \right)\propto {\int }_{0}^{\infty }{\tau }^{\frac{n}{2}-1}exp\left[-\frac{\tau }{2}\left\{{\left(\rho -\widehat{\rho }\right)}^{2}{A}_{2}+{\phi }_{2}\left(\beta ,\delta \right)\right\}\right]d\tau$$
$$\propto \frac{1}{{\left\{{\left(\rho -\widehat{\rho }\right)}^{2}{A}_{2}+{\phi }_{2}\left(\beta ,\delta \right)\right\}}^\frac{n}{2}} ,$$

so that,

$${\pi }_{2}\left(\rho |\beta ,\delta \right)={\mathrm{C}}_{2\uprho }^{-1}\frac{1}{{\left\{{\left(\rho -\widehat{\rho }\right)}^{2}{A}_{2}+{\phi }_{2}\left(\beta ,\delta \right)\right\}}^\frac{n}{2}}$$
(36)

with

$${C}_{2\rho }={\int }_{0}^{1}\frac{1}{{\left\{{\left(\rho -\widehat{\rho }\right)}^{2}{A}_{2}+{\phi }_{2}\left(\beta ,\delta \right)\right\}}^\frac{n}{2}}d\rho$$
$$=\frac{\mathrm{\rm B}\left(\frac{1}{2},\frac{n-1}{2}\right)}{{\phi }_{2}{\left(\beta ,\delta \right)}^{\frac{n-1}{2}}{A}_{2}^\frac{1}{2}}{\int }_{-\widehat{\rho }\sqrt{\frac{\left(n-1\right){A}_{2}}{{\phi }_{2}\left(\beta ,\delta \right)}}}^{\left(1-\widehat{\rho }\right)\sqrt{\frac{\left(n-1\right){A}_{2}}{{\phi }_{2}\left(\beta ,\delta \right)}}}{f}_{n-1}\left(t\right)dt$$
$$=\frac{\mathrm{\rm B}\left(\frac{1}{2},\frac{n-1}{2}\right)}{{\phi }_{2}{\left(\beta ,\delta \right)}^{\frac{n-1}{2}}{A}_{2}^\frac{1}{2}}\left[{F}_{n-1}\left(\left(1-\widehat{\rho }\right)\sqrt{\frac{\left(n-1\right){A}_{2}}{{\phi }_{2}\left(\beta ,\delta \right)}}\right)+{F}_{n-1}\left(\widehat{\rho }\sqrt{\frac{\left(n-1\right){A}_{2}}{{\phi }_{2}\left(\beta ,\delta \right)}}\right)-1\right].$$
(37)

Further

$${\lambda }_{\rho }\left(y\right)=\frac{\left(1-\epsilon \right){m}_{1\rho }\left(y\right)}{\left(1-\epsilon \right){m}_{1\rho }\left(y\right)+\epsilon {m}_{2\rho }\left(y\right)},$$

where

$${m}_{1\rho }\left(y\right)=\frac{1}{1-\vartheta }{\int }_{0}^{1-\vartheta }{\int }_{0}^{\infty }\frac{{\tau }^{\frac{n}{2}-1}}{{\left(2\pi \right)}^\frac{n}{2}}exp\left[-\frac{\tau }{2}\left\{{\left(\rho -{\widehat{\rho }}^{*}\right)}^{2}{A}_{1}+{\phi }_{1}\left(\beta ,\vartheta \right)\right\}\right]d\tau d\rho =\frac{\Gamma \left(\frac{n}{2}\right)}{{\pi }^\frac{n}{2}}{C}_{1\rho }$$
$${m}_{2\rho }\left(y\right)={\int }_{0}^{1}{\int }_{0}^{\infty }\frac{{\tau }^{\frac{n}{2}-1}}{{\left(2\pi \right)}^\frac{n}{2}}\mathrm{exp}[-\frac{\tau }{2}\left\{{\left(\rho -\widehat{\rho }\right)}^{2}{A}_{2}+{\phi }_{2}\left(\beta ,\delta \right)\right\}]d\tau d\rho =\frac{\Gamma \left(\frac{n}{2}\right)}{{\pi }^\frac{n}{2}}{C}_{2\rho }.$$

Thus

$${\lambda }_{\rho }\left(y\right)=\frac{\left(1-\epsilon \right){C}_{1\rho }}{\left(1-\epsilon \right){C}_{1\rho }+\epsilon {C}_{2\rho }}$$
(38)

Then the posterior density of \(\uprho\) given \(\left(\upbeta ,\mathrm{\vartheta },\updelta \right)\) is

$${\pi }^{*}\left(\rho |\beta ,\vartheta ,\delta \right)={\lambda }_{\rho }\left(y\right){\pi }_{1}\left(\rho |\beta ,\vartheta \right)+\left(1-{\lambda }_{\rho }\left(y\right)\right){\pi }_{2}\left(\rho |\beta ,\delta \right)$$
(39)

Derivation of Conditional Posterior Density of \({\varvec{\beta}}\) given \(\left({\varvec{\uprho}},{\varvec{\upvartheta}},{\varvec{\updelta}}\right)\) :

For deriving the conditional posterior density of \(\beta\) given \(\left(\uprho ,\mathrm{\vartheta },\updelta \right)\), we define

$$\mathcal{y}\left(\rho \right)={y}_{t}-\rho {y}_{t-1};t=1,\dots ,n$$
$${\mathcal{y}}_{t}\left(\rho +\vartheta \right)={y}_{t}-\left(\rho +\vartheta \right){y}_{t-1};t={n}_{1}+1,\dots ,n; \left(\mathrm{under model }{\mathrm{M}}_{1}\right)$$
$${\mathcal{x}}_{t}\left(\rho \right)={x}_{t}-\rho {x}_{t-1};t=1,\dots ,{n}_{1}$$
$${\mathcal{x}}_{t}\left(\rho +\vartheta \right)={x}_{t}-\left(\rho +\vartheta \right){x}_{t-1};t={n}_{1}+1,\dots ,n; \left(\mathrm{under model }{\mathrm{M}}_{1}\right)$$
$${A}_{3}\left(\rho ,\vartheta \right)\equiv {A}_{3}=\left(\sum_{t=1}^{{n}_{1}}{\mathcal{x}}_{t}\left(\rho \right){\mathcal{x}}_{t}{\left(\rho \right)}^{\mathrm{^{\prime}}}+\sum_{t={n}_{1}+1}^{n}{\mathcal{x}}_{t}\left(\rho +\vartheta \right){\mathcal{x}}_{t}{\left(\rho +\vartheta \right)}^{\mathrm{^{\prime}}}\right)$$
$${A}_{4}\left(\rho ,\delta \right)\equiv {A}_{4}=\left(\sum_{t=1}^{{n}_{1}}{\mathcal{x}}_{t}\left(\rho \right){\mathcal{x}}_{t}{\left(\rho \right)}^{\mathrm{^{\prime}}}+\delta \sum_{t={n}_{1}+1}^{n}{\mathcal{x}}_{t}\left(\rho \right){\mathcal{x}}_{t}{\left(\rho \right)}^{\mathrm{^{\prime}}}\right)$$
$${\mathcal{w}}_{3}\left(\rho ,\vartheta \right)=\left(\sum_{t=1}^{{n}_{1}}{\mathcal{x}}_{t}\left(\rho \right){\mathcal{y}}_{t}\left(\rho \right)+\sum_{t={n}_{1}+1}^{n}{\mathcal{x}}_{t}\left(\rho +\vartheta \right){\mathcal{y}}_{t}\left(\rho +\vartheta \right)\right)$$
$${\mathcal{w}}_{4}\left(\rho ,\delta \right)=\left(\sum_{t=1}^{{n}_{1}}{\mathcal{x}}_{t}\left(\rho \right){\mathcal{y}}_{t}\left(\rho \right)+\delta \sum_{t={n}_{1}+1}^{n}{\mathcal{x}}_{t}\left(\rho \right){\mathcal{y}}_{t}\left(\rho \right)\right)$$
$$\widehat{\beta }\left(\rho ,\vartheta \right)={\left({A}_{3}+V\right)}^{-1}\left({\mathcal{w}}_{3}\left(\rho ,\vartheta \right)+V{\beta }_{0}\right)$$
$$\widehat{\beta }\left(\rho ,\delta \right)={\left({A}_{4}+V\right)}^{-1}\left({\mathcal{w}}_{4}\left(\rho ,\delta \right)+V{\beta }_{0}\right)$$
$${\phi }_{3}\left(\rho ,\vartheta \right)=\sum_{t=1}^{{n}_{1}}{{\mathcal{y}}_{t}\left(\rho \right)}^{2}+\sum_{t={n}_{1}+1}^{n}{{\mathcal{y}}_{t}\left(\rho +\vartheta \right)}^{2}+{\beta }_{0}^{^{\prime}}V{\beta }_{0}-\widehat{\beta }{\left(\rho ,\vartheta \right)}^{^{\prime}}\left({A}_{3}+V\right)\widehat{\beta }\left(\rho ,\vartheta \right)$$
$${\phi }_{4}\left(\rho ,\delta \right)=\sum_{t=1}^{{n}_{1}}{{\mathcal{y}}_{t}\left(\rho \right)}^{2}+\delta \sum_{t={n}_{1}+1}^{n}{{\mathcal{y}}_{t}\left(\rho \right)}^{2}+{\beta }_{0}^{^{\prime}}V{\beta }_{0}-\widehat{\beta }{\left(\rho ,\delta \right)}^{^{\prime}}\left({A}_{4}+V\right)\widehat{\beta }\left(\rho ,\delta \right)$$

Then, under the model \({M}_{1}\), combining the likelihood with the prior distributions of \((\beta ,\tau )\), gives the posterior distribution of \(\beta\) given (\(\rho ,\vartheta )\) as

$${\pi }_{1}\left(\beta |\rho ,\vartheta \right)$$
$$={C}_{1\beta }^{-1}\frac{1}{{\left(2\pi \right)}^\frac{k}{2}}{\int }_{0}^{\infty }{\tau }^{\frac{n+k}{2}-1}exp\left[-\frac{\tau }{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)}^{^{\prime}}\left({A}_{3}+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)\right\}\right]d\tau$$
$$={C}_{1\beta }^{-1}\frac{{2}^{\frac{\mathrm{n}}{2}}\Gamma \left(\frac{n+k}{2}\right)}{{{\pi }^\frac{k}{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)}^{^{\prime}}\left({A}_{3}+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)\right\}}^{\frac{n+k}{2}}}$$
(40)

where

$${C}_{1\beta }\equiv {C}_{1\beta } (\rho ,\vartheta )$$
$$={\int }_{0}^{\infty }\frac{1}{{\left(2\pi \right)}^\frac{k}{2}}{\int }_{{R}^{k}}{\tau }^{\frac{n+k}{2}-1}exp\left[-\frac{\tau }{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)}^{^{\prime}}\left({A}_{3}+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)\right\}\right]d\beta d\tau$$
$$=\frac{{2}^{\frac{\mathrm{n}}{2}}\Gamma \left(\frac{n}{2}\right)}{{\left|{A}_{3}+V\right|}^\frac{1}{2}{{\phi }_{3}\left(\rho ,\vartheta \right)}^\frac{n}{2}}$$
(41)

Further, under model \({M}_{2}\), the posterior distribution of \(\beta\) given (\(\rho ,\delta )\) is obtained as

$${\pi }_{2}\left(\beta |\rho ,\delta \right)={C}_{2\beta }^{-1}\frac{{2}^{\frac{\mathrm{n}}{2}}\Gamma \left(\frac{n+k}{2}\right)}{{{\pi }^\frac{k}{2}\left\{{\phi }_{4}\left(\rho ,\delta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)}^{\mathrm{^{\prime}}}\left({A}_{4}+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)\right\}}^{\frac{n+k}{2}}}$$
(42)

where

$${C}_{2\beta }\equiv {C}_{2\beta } (\rho ,\delta )$$
$$={\int }_{0}^{\infty }\frac{1}{{\left(2\pi \right)}^\frac{k}{2}}{\int }_{{R}^{k}}{\tau }^{\frac{n+k}{2}-1}exp\left[-\frac{\tau }{2}\left\{{\phi }_{4}\left(\rho ,\delta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)}^{^{\prime}}{\left({A}_{4}+V\right)}^{-1}\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)\right\}\right]d\beta d\tau$$
$$=\frac{{2}^{\frac{\mathrm{n}}{2}}\Gamma \left(\frac{n}{2}\right)}{{\left|{A}_{4}+V\right|}^\frac{1}{2}{{\phi }_{4}\left(\rho ,\delta \right)}^\frac{n}{2}}$$
(43)

Then the posterior density of \(\upbeta\) given \(\left(\uprho ,\mathrm{\vartheta },\updelta \right)\) is

$${\pi }^{*}\left(\beta |\rho ,\vartheta ,\delta \right)={\lambda }_{\beta }\left(y\right){\pi }_{1}\left(\beta |\rho ,\vartheta \right)+\left(1-{\lambda }_{\beta }\left(y\right)\right){\pi }_{2}\left(\beta |\rho ,\delta \right)$$
(44)

where

$${\lambda }_{\beta }\left(y\right)\equiv {\lambda }_{\beta }\left(y|\rho ,\vartheta ,\delta \right)=\frac{\left(1-\epsilon \right){C}_{1\beta }}{\left(1-\epsilon \right){C}_{1\beta }+\epsilon {C}_{2\beta }}.$$

Derivation of conditional posterior distribution of \({\varvec{\tau}}\) given \(\left({\varvec{\rho}},\boldsymbol{\vartheta },{\varvec{\delta}}\right):\)

Under model \({M}_{1}\), the conditional posterior distribution of \(\tau\) given \(\left(\rho ,\vartheta ,\delta =1\right)\) is

$${\pi }_{1}\left(\tau |\rho ,\vartheta \right)$$
$$\propto \frac{1}{{\left(2\pi \right)}^\frac{k}{2}}{\int }_{{R}^{k}}{\tau }^{\frac{n+k}{2}-1}exp\left[-\frac{\tau }{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)}^{^{\prime}}\left({A}_{3}+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)\right\}\right]d\beta$$
$$\propto {\tau }^{\frac{n}{2}-1}exp\left[-\frac{\tau }{2}{\phi }_{3}\left(\rho ,\vartheta \right)\right]$$

Hence

$${\pi }_{1}\left(\tau |\rho ,\vartheta \right)=\frac{{\phi }_{3}{\left(\rho ,\vartheta \right)}^\frac{n}{2}{\tau }^{\frac{n}{2}-1}}{{2}^\frac{n}{2}\Gamma (\frac{n}{2})}exp\left[-\frac{\tau }{2}{\phi }_{3}\left(\rho ,\vartheta \right)\right]$$
(45)

Similarly, under model \({M}_{2}\), the conditional posterior distribution of \(\tau\) given \(\left(\rho ,\delta ,\vartheta =0\right)\) is obtained as

$${\pi }_{2}\left(\tau |\rho ,\delta \right)=\frac{{\phi }_{4}{\left(\rho ,\delta \right)}^\frac{n}{2}{\tau }^{\frac{n}{2}-1}}{{2}^\frac{n}{2}\Gamma (\frac{n}{2})}exp\left[-\frac{\tau }{2}{\phi }_{4}\left(\rho ,\delta \right)\right]$$
(46)

Further, the conditional posterior distribution of \(\tau\) given \(\left(\rho ,\delta ,\vartheta \right)\) is given by

$${\pi }^{*}\left(\tau |\rho ,\vartheta ,\delta \right)={\lambda }_{\tau }\left(y\right){\pi }_{1}\left(\tau |\rho ,\vartheta \right)+\left(1-{\lambda }_{\tau }\left(y\right)\right){\pi }_{2}\left(\tau |\rho ,\delta \right)$$
(47)

where

$${\lambda }_{\tau }\left(y\right)=\frac{\frac{\left(1-\epsilon \right)}{{\phi }_{3}{\left(\rho ,\vartheta \right)}^\frac{n}{2}}}{\frac{\left(1-\epsilon \right)}{{\phi }_{3}{\left(\rho ,\vartheta \right)}^\frac{n}{2}}+\frac{\epsilon }{{\phi }_{4}{\left(\rho ,\delta \right)}^\frac{n}{2}}}$$
$$= \frac{\left(1-\epsilon \right){\phi }_{4}{\left(\rho ,\delta \right)}^\frac{n}{2}}{\left(1-\epsilon \right){\phi }_{4}{\left(\rho ,\delta \right)}^\frac{n}{2}+\epsilon {\phi }_{3}{\left(\rho ,\vartheta \right)}^\frac{n}{2}}$$
(48)

Derivation of posterior distributions of \(\boldsymbol{\vartheta }\) and \({\varvec{\delta}}\) :

We have

$$P\left(\vartheta =0|y\right)=\frac{p\left(y|\vartheta =0\right)P\left(\vartheta =0\right)}{p\left(y|\vartheta =0\right)P\left(\vartheta =0\right)+p\left(y|\delta =1\right)P\left(\delta =1\right)}$$
$$=\frac{p\left(y|\vartheta =0\right)\left(1-\epsilon \right)}{p\left(y|\vartheta =0\right)\left(1-\epsilon \right)+p\left(y|\delta =1\right)\epsilon }$$
(49)

and

$$P\left(\delta =1|y\right)=\frac{p\left(y|\delta =1\right)P\left(\delta =1\right)}{p\left(y|\vartheta =0\right)P\left(\vartheta =0\right)+p\left(y|\delta =1\right)P\left(\delta =1\right)}$$
$$=\frac{p\left(y|\delta =1\right)\epsilon }{p\left(y|\vartheta =0\right)\left(1-\epsilon \right)+p\left(y|\delta =1\right)\epsilon }$$
(50)

Now

$$p\left(y|\vartheta =0\right)={\int }_{0}^{1}{\int }_{0}^{1}{\int }_{0}^{\infty }{\int }_{{R}^{k}}\frac{{\tau }^{\frac{n+k}{2}-1}{\delta }^{\frac{{n}_{2}}{2}}{\left|V\right|}^\frac{1}{2}}{{\left(2\pi \right)}^{\frac{n+k}{2}}}\mathrm{exp}\left[-\frac{\tau }{2}\left\{{\phi }_{4}\left(\rho ,\delta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)}^{^{\prime}}\left({A}_{4}\left(\rho ,\delta \right)+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)\right\}\right]d\beta d\tau d\rho d\delta$$
$$=\frac{\Gamma \left(\frac{n}{2}\right){\left|V\right|}^\frac{1}{2}}{{\pi }^\frac{n}{2}}{\int }_{0}^{1}{\int }_{0}^{1}\frac{{\delta }^{\frac{{n}_{2}}{2}}}{{\phi }_{4}{\left(\rho ,\delta \right)}^\frac{n}{2}{\left|{A}_{4}\left(\rho ,\delta \right)+V\right|}^\frac{1}{2}}d\rho d\delta$$
$$=\frac{\Gamma \left(\frac{n}{2}\right){\left|V\right|}^\frac{1}{2}}{{\pi }^\frac{n}{2}}{\Upsilon }_{1}$$
(51)

Further

$$p\left(y|\delta =1\right)={\int }_{0}^{1}{\int }_{0}^{1-\vartheta }{\int }_{0}^{\infty }{\int }_{{R}^{k}}2\frac{{\tau }^{\frac{n+k}{2}-1}{\left|V\right|}^\frac{1}{2}}{{\left(2\pi \right)}^{\frac{n+k}{2}}}\mathrm{exp}\left[-\frac{\tau }{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)}^{^{\prime}}\left({A}_{3}\left(\rho ,\vartheta \right)+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)\right\}\right]d\beta d\tau d\rho d\vartheta$$
$$=\frac{\Gamma \left(\frac{n}{2}\right){\left|V\right|}^\frac{1}{2}}{{\pi }^\frac{n}{2}}{\int }_{0}^{1}{\int }_{0}^{1-\vartheta }\frac{2}{{{\phi }_{3}\left(\rho ,\vartheta \right)}^\frac{n}{2}{\left|{A}_{3}\left(\rho ,\vartheta \right)+V\right|}^\frac{1}{2}}d\rho d\vartheta$$
$$=\frac{\Gamma \left(\frac{n}{2}\right){\left|V\right|}^\frac{1}{2}}{{\pi }^\frac{n}{2}}{\Upsilon }_{2}$$
(52)

Here

$${\Upsilon }_{1}={\int }_{0}^{1}{\int }_{0}^{1}\frac{{\delta }^{\frac{{n}_{2}}{2}}}{{\phi }_{4}{\left(\rho ,\delta \right)}^\frac{n}{2}{\left|{A}_{4}\left(\rho ,\delta \right)+V\right|}^\frac{1}{2}}d\rho d\delta$$
$${\Upsilon }_{2}={\int }_{0}^{1}{\int }_{0}^{1-\vartheta }\frac{2}{{{\phi }_{3}\left(\rho ,\vartheta \right)}^\frac{n}{2}{\left|{A}_{3}\left(\rho ,\vartheta \right)+V\right|}^\frac{1}{2}}d\rho d\vartheta$$

Hence

$$P\left(\vartheta =0|y\right)=\frac{{\Upsilon }_{1}\left(1-\epsilon \right)}{{\Upsilon }_{1}\left(1-\epsilon \right)+{\Upsilon }_{2}\epsilon }$$
$$={\lambda }_{{M}_{1}\left(y\right)} (\mathrm{say})$$
$$P\left(\delta =1|y\right)=\frac{{\Upsilon }_{2}\epsilon }{{\Upsilon }_{1}\left(1-\epsilon \right)+{\Upsilon }_{2}\epsilon }$$
$$=1-{\lambda }_{{M}_{1}\left(y\right)}={\lambda }_{{M}_{2}\left(y\right)} (\mathrm{say})$$

The posterior density of \(\vartheta\), when \(\delta =1\), is given by

$${p}^{*}\left(\vartheta |y\right)$$
$$\propto \frac{1}{1-\vartheta }{\int }_{0}^{1-\vartheta }{\int }_{0}^{\infty }{\int }_{{R}^{k}}{\tau }^{\frac{n+k}{2}-1}\mathrm{exp}\left[-\frac{\tau }{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)}^{^{\prime}}\left({A}_{3}\left(\rho ,\vartheta \right)+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)\right\}\right]d\beta d\tau d\rho$$
$$\propto \frac{1}{1-\vartheta }{\int }_{0}^{1-\vartheta }\frac{1}{{\left|{A}_{3}\left(\rho ,\vartheta \right)+V\right|}^\frac{1}{2}}{\int }_{0}^{\infty }{\tau }^{\frac{n}{2}-1}\mathrm{exp}\left[-\frac{\tau }{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)\right\}\right]d\tau \mathrm{d\rho }$$
$$\propto \frac{1}{1-\vartheta }{\int }_{0}^{1-\vartheta }{{\phi }_{3}\left(\rho ,\vartheta \right)}^{-\frac{n}{2}}{\left|{A}_{3}\left(\rho ,\vartheta \right)+V\right|}^{-\frac{1}{2}}d\rho$$

Hence

$${p}^{*}\left(\vartheta |y\right)=\frac{\frac{1}{1-\vartheta }{\int }_{0}^{1-\vartheta }{{\phi }_{3}\left(\rho ,\vartheta \right)}^{-\frac{n}{2}}{\left|{A}_{3}\left(\rho ,\vartheta \right)+V\right|}^{-\frac{1}{2}}d\rho }{{\int }_{0}^{1}\frac{1}{1-\vartheta }{\int }_{0}^{1-\vartheta }{{\phi }_{3}\left(\rho ,\vartheta \right)}^{-\frac{n}{2}}{\left|{A}_{3}\left(\rho ,\vartheta \right)+V\right|}^{-\frac{1}{2}}d\rho d\vartheta };\left(0<\vartheta <1\right)$$
(53)

Therefore, the posterior distribution of \(\vartheta\) is a mixture of discrete and continuous distribution and given by

$${\pi }^{*}\left(\vartheta |y\right)=\left\{\begin{array}{c}{\lambda }_{{M}_{1}\left(y\right)}; if \vartheta =0\\ \left(1-{\lambda }_{{M}_{1}\left(y\right)}\right){p}^{*}\left(\vartheta |y\right); if 0<\vartheta <1\end{array}\right.$$
(54)

The posterior density of \(\delta\), when \(\vartheta =0\), is obtained as

$${p}^{*}\left(\delta |y\right)\propto {\delta }^{\frac{{n}_{2}}{2}}{\int }_{0}^{1}{\int }_{0}^{\infty }{\int }_{{R}^{k}}{\tau }^{\frac{n+k}{2}-1}\mathrm{exp}\left[-\frac{\tau }{2}\left\{{\phi }_{4}\left(\rho ,\delta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)}^{^{\prime}}{\left({A}_{4}(\delta ,\rho )+V\right)}^{-1}\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)\right\}\right]d\beta d\tau d\rho$$
$$\propto {\int }_{0}^{1}{\delta }^{\frac{{n}_{2}}{2}}{{\phi }_{4}\left(\rho ,\delta \right)}^{-\frac{n}{2}}{\left|{A}_{4}\left(\delta ,\rho \right)+V\right|}^{-\frac{1}{2}}d\rho$$

Hence

$${p}^{*}\left(\delta |y\right)=\frac{{\int }_{0}^{1}{\delta }^{\frac{{n}_{2}}{2}}{{\phi }_{4}\left(\rho ,\delta \right)}^{-\frac{n}{2}}{\left|{A}_{4}\left(\delta ,\rho \right)+V\right|}^{-\frac{1}{2}}d\rho }{{\int }_{0}^{1}{\int }_{0}^{1}{\delta }^{\frac{{n}_{2}}{2}}{{\phi }_{4}\left(\rho ,\delta \right)}^{-\frac{n}{2}}{\left|{A}_{4}\left(\delta ,\rho \right)+V\right|}^{-\frac{1}{2}}d\rho d\delta }$$
(55)

Again, the posterior distribution of \(\delta\) is a mixture of discrete and continuous distribution and given by

$${\pi }^{*}\left(\delta |y\right)=\left\{\begin{array}{c}1-{\lambda }_{{M}_{1}\left(y\right)}; if \delta =1\\ {\lambda }_{{M}_{1}\left(y\right)}{p}^{*}\left(\delta |y\right); if 0<\delta <1\end{array}\right.$$
(56)

Derivation of Posterior Odds Ratio

For obtaining the posterior odds, let us consider the numerator of the Eq. (27)

$$\pi \left({H}_{0}\right)$$
$$={\int }_{0}^{1}{\int }_{0}^{1}{\int }_{0}^{\infty }{\int }_{{R}^{k}}\frac{{\tau }^{\frac{n+k}{2}-1}{\left|V\right|}^\frac{1}{2}{\delta }^{\frac{{n}_{2}}{2}}}{{\left(2\pi \right)}^{\frac{n+k}{2}}}exp\left[-\frac{\tau }{2}\left\{{\phi }_{4}\left(\rho ,\delta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)}^{^{\prime}}\left({A}_{4}\left(\rho ,\delta \right)+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\delta \right)\right)\right\}\right]d\beta d\tau d\delta d\rho$$
$$=\frac{\Gamma \left(\frac{n}{2}\right){\left|V\right|}^\frac{1}{2}}{{\pi }^\frac{n}{2}}{\Upsilon }_{1}$$
(57)

Further, the denominator of (27) is given by

$$\pi \left({H}_{1}\right)$$
$$={\int }_{0}^{1}{\int }_{0}^{1-\vartheta }{\int }_{0}^{\infty }{\int }_{{R}^{k}}2\frac{{\tau }^{\frac{n+k}{2}-1}{\left|V\right|}^\frac{1}{2}}{{\left(2\pi \right)}^{\frac{n+k}{2}}}exp\left[-\frac{\tau }{2}\left\{{\phi }_{3}\left(\rho ,\vartheta \right)+{\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)}^{^{\prime}}\left({A}_{3}\left(\rho ,\vartheta \right)+V\right)\left(\beta -\widehat{\beta }\left(\rho ,\vartheta \right)\right)\right\}\right]d\beta d\tau d\rho d\vartheta$$
$$=\frac{\Gamma \left(\frac{n}{2}\right){\left|V\right|}^\frac{1}{2}}{{\pi }^\frac{n}{2}}{\Upsilon }_{2}$$
(58)

Utilization of (57) and (58) in (27) leads to the required expression (28) for the posterior odds ratio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, A., Chaturvedi, A. & Srivastava, A. Modeling Structural Breaks in Disturbances Precision or Autoregressive Parameter in Dynamic Model: A Bayesian Approach. J Indian Soc Probab Stat 23, 129–154 (2022). https://doi.org/10.1007/s41096-022-00115-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-022-00115-8

Keywords

Navigation