Skip to main content
Log in

Thermal, chemical and rheological properties of asphalt binders extracted from field cores

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The intermediate-temperature performance of extracted asphalt binders (EABs) is altered when recycled asphalt shingles (RAS) and/or reclaimed asphalt pavement (RAP) are included in asphalt mixes. This happened as a result of the RAP’s aged asphalt binder and the RAS’s oxidized air-blown asphalt. Thus, the rheological properties of EABs from field cores were examined at intermediate temperatures. The fatigue life and the Superpave fatigue cracking parameter were among the rheological properties. Thermogravimetric analysis and Fourier transform infrared were used to analyze EABs’ thermal and chemical characteristics, respectively. The relationships between EABs’ fatigue cracking resistance, thermal, and chemical characteristics were scrutinized. Ages of mixes, percentages of RAP and/or RAS, and intermediate performance grade (PG) temperatures of virgin asphalt binders (VABs) controlled the resistance of EABs to fatigue cracking. Considering VABs with the same intermediate PG temperatures, EABs from older mixes with higher RAS percentages had higher resistance to fatigue cracking than those from younger mixes with lower RAP percentages. When RAP percentages in asphalt mixes were increased, EABs’ resistance to fatigue cracking deteriorated. Thermal and chemical analyses along with rheological characteristics are suggested as indicators of EABs’ intermediate-temperature performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Davis J (2011) Using recycled asphalt shingles in asphalt pavements. The Magazine of the Asphalt Institute. http://asphaltmagazine.com/using-recycled-asphalt-shingles-in-asphalt-pavements/. Accessed 3 Mar 2022

  2. Copeland A (2011) Reclaimed asphalt pavement in asphalt mixtures: state of the practice. Technical Report FHWA-HRT-11–021, Office Infrastruct Res Development, Federal Highw Administration, McLean, VA, USA

  3. Wang Z, Wang P, Guo H, Wang X, Li G (2020) Adhesion improvement between RAP and emulsified asphalt by modifying the surface characteristics of RAP. Adv Mater Sci Eng 2020:1–10. https://doi.org/10.1155/2020/4545971

    Article  Google Scholar 

  4. Buttlar WG, Abdelrahman M, Majidifard H, Deef-Allah E (2021) Understanding and improving heterogeneous, modern recycled asphalt mixes. Technical Report cmr 21-007, Univ. Missouri, Columbia, MO, USA

  5. De Lira RR, Cortes DD, Pasten C (2015) Reclaimed asphalt binder aging and its implications in the management of RAP stockpiles. Constr Build Mater 101(1):611–616. https://doi.org/10.1016/j.conbuildmat.2015.10.125

    Article  Google Scholar 

  6. Williams RC, Cascione A, Haugen DS, Buttlar WG, Bentsen RA, Behnke J (2011) Characterization of hot mix asphalt containing post-consumer recycled asphalt shingles and fractionated reclaimed asphalt pavement. Technical Report, Iowa State Univ., Ames, IA

  7. Willis JR, Turner P (2016) Characterization of asphalt binder extracted from reclaimed asphalt shingles. Technical Report NCAT Report 16-01. NCAT, Auburn, AL, USA

  8. Rubino B (2010) An investigative look at the effects of post consumer recycled asphalt shingles on soils and flexible pavements. M.Sc., thesis, Iowa State University, Ames, Iowa

  9. Meil J (2006) A life cycle perspective on concrete and asphalt roadways: Embodied primary energy and global warming potential. Athena Institute, Ottawa

    Google Scholar 

  10. Hong F, Prozzi JA (2018) Evaluation of recycled asphalt pavement using economic, environmental, and energy metrics based on long-term pavement performance sections. Road Mater Pavement Des 19(8):1816–1831. https://doi.org/10.1080/14680629.2017.1348306

    Article  Google Scholar 

  11. Davis J (2009) Roofing the road—using asphalt shingles as binder. The Magazine of the Asphalt Institute. http://asphaltmagazine.com/roofing-the-road-using-asphalt-shingles-as-binder/. Accessed 4 Mar 2022

  12. Deef-Allah E, Abdelrahman M (2022) Interactions between RAP and virgin asphalt binders in field, plant, and lab mixes. World J Adv Res Rev 13(1):231–249. https://doi.org/10.30574/wjarr.2022.13.1.0744

    Article  Google Scholar 

  13. Deef-Allah E, Abdelrahman M (2022) Characterization of asphalt binders extracted from field mixtures containing RAP and/or RAS. World J Adv Res Rev 13(1):140–152. https://doi.org/10.30574/wjarr.2022.13.1.0729

    Article  Google Scholar 

  14. Deef-Allah E, Abdelrahman M, Ragab M (2022) Components’ exchanges between recycled materials and asphalt binders in asphalt mixes. Adv Civ Eng Mater 11(1):94–114. https://doi.org/10.1520/ACEM20210105

    Article  Google Scholar 

  15. Bahia HU, Swiertz D (2011) Design system for HMA containing a high percentage of RAS material. Technical report University of Wisconsin Madison, Madison

  16. Deef-Allah E, Abdelrahman M (2022) Evaluating the low-temperature properties of asphalt binders extracted from mixtures containing recycled materials. Period Polytech Civ Eng. https://doi.org/10.3311/PPci.19681

    Article  Google Scholar 

  17. Deef-Allah E, Abdelrahman M (2021) Investigating the relationship between the fatigue cracking resistance and thermal characteristics of asphalt binders extracted from field mixes containing recycled materials. Transp Eng 4:100055. https://doi.org/10.1016/j.treng.2021.100055

    Article  Google Scholar 

  18. Nciri N, Kim J, Kim N, Cho N (2016) An in-depth investigation into the physicochemical, thermal, microstructural, and rheological properties of petroleum and natural asphalts. Materials 9(10):859. https://doi.org/10.3390/ma9100859

    Article  Google Scholar 

  19. Elkashef M, Williams RC, Cochran E (2018) Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis–Fourier transform infrared (TG–FTIR). J Therm Anal Calorim 131:865–871. https://doi.org/10.1007/s10973-017-6674-9

    Article  Google Scholar 

  20. Elseifi MA, Alvergue A, Mohammad LN et al (2016) Rutting and fatigue behaviors of shingle-modified asphalt binders. J Mater Civ Eng 28(2):04015113. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001400

    Article  Google Scholar 

  21. Abbas AR, Mannan UA, Dessouky S (2013) Effect of recycled asphalt shingles on physical and chemical properties of virgin asphalt binders. Constr Build Mater 45:162–172. https://doi.org/10.1016/j.conbuildmat.2013.03.073

    Article  Google Scholar 

  22. Wen H, Bahia H (2009) Characterizing fatigue of asphalt binders with viscoelastic continuum damage mechanics. Transp Res Rec 2126(1):55–62. https://doi.org/10.3141/2126-07

    Article  Google Scholar 

  23. Bessa IS, Vasconcelos KL, Castelo Branco VTF, Bernucci LLB (2019) Fatigue resistance of asphalt binders and the correlation with asphalt mixture behaviour. Road Mater Pavement Des 20(sup2):S695–S709. https://doi.org/10.1080/14680629.2019.1633741

    Article  Google Scholar 

  24. Johnson C (2010) Estimating asphalt binder fatigue resistance using an accelerated test method. Ph.d dissertation, University of Wisconsin-Madison, Madison, Wisconsin

  25. Safaei F, Castorena C (2017) Material nonlinearity in asphalt binder fatigue testing and analysis. Mater Des 133:376–389. https://doi.org/10.1016/j.matdes.2017.08.010

    Article  Google Scholar 

  26. Sabouri M, Mirzaeian D, Moniri A (2018) Effectiveness of linear amplitude sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance. Constr Build Mater 171:281–290. https://doi.org/10.1016/j.conbuildmat.2018.03.146

    Article  Google Scholar 

  27. Kim S, Sholar GA, Byron T, Kim J (2009) Performance of polymer-modified asphalt mixture with reclaimed asphalt pavement. Transp Res Rec 2126(1):109–114. https://doi.org/10.3141/2126-13

    Article  Google Scholar 

  28. Zhou Z, Gu X, Dong Q et al (2019) Rutting and fatigue cracking performance of SBS-RAP blended binders with a rejuvenator. Constr Build Mater 203:294–303. https://doi.org/10.1016/j.conbuildmat.2019.01.119

    Article  Google Scholar 

  29. Barghabany P, Cao W, Mohammad LN et al (2020) Relationships among chemistry, rheology, and fracture/fatigue performance of recovered asphalt binders and asphalt mixtures containing reclaimed asphalt pavement. Transp Res Rec 2674(10):927–938. https://doi.org/10.1177/0361198120938779

    Article  Google Scholar 

  30. Jiménez-Mateos JM, Quintero LC, Rial C (1996) Characterization of petroleum bitumens and their fractions by thermogravimetric analysis and differential scanning calorimetry. Fuel 75(15):1691–1700. https://doi.org/10.1016/S0016-2361(96)00169-X

    Article  Google Scholar 

  31. ISO 11358-1 (2014) Plastics—thermogravimetry (TG) of polymers—part 1: general principles. ISO. https://www.iso.org/standard/59710.html. Accesses 15 Dec 2021

  32. Puello J, Afanasjeva N, Alvarez M (2013) Thermal properties and chemical composition of bituminous materials exposed to accelerated ageing. Road Mater Pavement Des 14(2):278–288. https://doi.org/10.1080/14680629.2013.785799

    Article  Google Scholar 

  33. Elkashef M, Elwardany MD, Liang Y, Jones D, Harvey J, Bolton ND, Planche J-P (2020) Effect of using rejuvenators on the chemical, thermal, and rheological properties of asphalt binders. Energy Fuels 34(2):2152–2159. https://doi.org/10.1021/acs.energyfuels.9b03689

    Article  Google Scholar 

  34. Nciri N, Shin T, Kim N, Caron A, Ben Ismail H, Cho N (2020) Towards the use of waste pig fat as a novel potential bio-based rejuvenator for recycled asphalt pavement. Materials 13(4):1002. https://doi.org/10.3390/ma13041002

    Article  Google Scholar 

  35. Kim S, Byron T, Sholar GA, Kim J (2007) Evaluation of use of high percentage of reclaimed asphalt pavement (RAP) for Superpave mixtures. Technical Report FL/DOT/SMO/07-507. Florida DOT, Tallahassee

  36. Al-Qadi IL, Carpenter SH, Roberts G, Ozer H, Aurangzeb Q, Elseifi M, Trepanier J (2009) Determination of usable residual asphalt binder in RAP. Technical report. FHWA-ICT-09-031. University Illinois Urbana-Champaign, Urbana

  37. McMillan C, Palsat D (1985) Alberta’s experience in asphalt recycling. Proc Canad Tech Asphalt Assoc 30:148–167

    Google Scholar 

  38. Petersen JC (1984) Chemical composition of asphalt as related to asphalt durability: state of the art. Transp Res Rec 999:13–30

  39. ASTM D2172 / D2172M-17e1 (2018) Standard test methods for quantitative extraction of asphalt binder from asphalt mixtures. ASTM International, West Conshohocken

  40. ASTM D5404 / D5404M-21 (2021) Standard practice for recovery of asphalt from solution using the rotary evaporator. ASTM International, West Conshohocken

  41. AASHTO T 315-12 (2016) Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). AASHTO provisional standards, Washington

  42. Johnson C, Wen H, Bahia H (2009) Practical application of viscoelastic continuum damage theory to asphalt binder fatigue characterization. J Assoc Asphalt Paving Technol 78:597–638

    Google Scholar 

  43. AASHTO TP 101-14 (2014) Estimating damage tolerance of asphalt binders using the linear amplitude sweep. AASHTO provisional standards, Washington

  44. Kose S, Guler M, Bahia HU, Masad E (2000) Distribution of strains within hot-mix asphalt binders: applying imaging and finite-element techniques. Transp Res Rec 1728(1):21–27. https://doi.org/10.3141/1728-04

    Article  Google Scholar 

  45. Bahia H, Tabatabaee HA, Mandal T, Faheem (2013) A field evaluation of Wisconsin modified binder selection guidelines—phase II. Technical report. University of Wisconsin-Madison, Madison

  46. Teymourpour P, Bahia H (2014) Linear amplitude sweep test: Binder grading specification and field validation. In: Binder expert task group meeting. Baton Rouge

  47. Kim Y, Lee HJ, Little DN, Kim YR (2006) A simple testing method to evaluate fatigue fracture and damage performance of asphalt mixtures. J Assoc Asphalt Paving Technol 75:755–788

    Google Scholar 

  48. Cao W, Wang C (2018) A new comprehensive analysis framework for fatigue characterization of asphalt binder using the linear amplitude sweep test. Constr Build Mater 171:1–12. https://doi.org/10.1016/j.conbuildmat.2018.03.125

    Article  Google Scholar 

  49. Deef-Allah E, Abdelrahman M (2021) Effect of used motor oil as a rejuvenator on crumb rubber modifier’s released components to asphalt binder. Prog Rubber Plast Recycl Technol 37(2):87–114. https://doi.org/10.1177/1477760620918600

    Article  Google Scholar 

  50. van den Bergh W (2011) The effect of ageing on the fatigue and healing properties of bituminous mortars. Ph.d., dissertation, Delft University of Technology, Netherlands

  51. Singh D, Sawant D (2016) Understanding effects of RAP on rheological performance and chemical composition of SBS modified binder using series of laboratory tests. Int J Pavement Res Technol 9(3):178–189. https://doi.org/10.1016/j.ijprt.2016.06.002

    Article  Google Scholar 

  52. de la Roche C, van de Ven M, Planche J-P, van den Bergh W, Grenfell J, Gabet T, Mouillet V, Porot L, Farcas F, Ruot C (2013) Hot recycling of bituminous mixtures. In: Partl MN, Bahia HU, Canestrari F, de la Roche C, di Benedetto H, Piber H, Sybilski D (eds) Advances in interlaboratory testing and evaluation of bituminous materials, 1st edn. Springer, Dordrecht, pp 361–428

    Chapter  Google Scholar 

  53. Mullapudi RS, Reddy KS (2020) An investigation on the relationship between FTIR indices and surface free energy of RAP binders. Road Mater Pavement Des 21(5):1326–1340. https://doi.org/10.1080/14680629.2018.1552889

    Article  Google Scholar 

  54. Gong M, Yang J, Yao H, Yao H, Wang M, Niu X, Haddock JE (2018) Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder. Road Mater Pavement Des 19(7):1499–1522. https://doi.org/10.1080/14680629.2017.1323661

    Article  Google Scholar 

  55. Hofko B, Porot L, Falchetto Cannone A, Poulikakos L, Huber L, Lu X, Mollenhauer K, Grothe H (2018) FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Mater Struct. https://doi.org/10.1617/s11527-018-1170-7

    Article  Google Scholar 

  56. ASTM E1131-20 (2020) Standard test method for compositional analysis by thermogravimetry. ASTM International, West Conshohocken

  57. Salin IM, Seferis JC (1993) Kinetic analysis of high-resolution TGA variable heating rate data. J Appl Polymer Sci 47(5):847–856. https://doi.org/10.1002/app.1993.070470512

    Article  Google Scholar 

  58. Gill PS, Sauerbrunn SR, Crowe BS (1992) High resolution thermogravimetry. J Therm Anal 38:255–266. https://doi.org/10.1007/BF01915490

    Article  Google Scholar 

  59. AASHTO M 332-19 (2019) Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. AASHTO provisional standards, Washington

  60. AASHTO M 320-17 (2017) Standard specification for performance-graded asphalt binder. AASHTO provisional standards, Washington

  61. Qian C, Fan W, Yang G, Han L, Xing B, Lv X (2020) Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt. Constr Build Mater 235:117517. https://doi.org/10.1016/j.conbuildmat.2019.117517

    Article  Google Scholar 

  62. Shi C, Cai X, Wang T, Yi X, Liu S, Yang J, Leng Z (2021) Energy-based characterization of the fatigue crack density evolution of asphalt binders through controlled-stress fatigue testing. Constr Build Mater 300:124275. https://doi.org/10.1016/j.conbuildmat.2021.124275

    Article  Google Scholar 

  63. Bairgi BK, Hasan MA, Tarefder RA (2021) Effects of asphalt foaming on damage characteristics of foamed warm mix asphalt. Transp Res Rec 2675(8):318–331. https://doi.org/10.1177/0361198121997823

    Article  Google Scholar 

  64. Cooksey RW (2020) Illustrating statistical procedures: finding meaning in quantitative data, 3rd edn. Springer Nature Singapore Pte Ltd., Singapore

    Book  Google Scholar 

  65. Riddiough R, Thomas D (1998) Statistics for higher mathematics. Nelson Thornes & Sons Ltd., United Kingdom

    Google Scholar 

  66. Lemaitre J (1996) A course on damage mechanics. Springer, Berlin

    Book  Google Scholar 

  67. Kachanov LM (1986) Introduction to continuum damage mechanics. Springer, Dordrecht

    Book  Google Scholar 

  68. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New York

    Google Scholar 

  69. Beauchamp P (2011) Spectroscopy tables: infrared tables (short summary of common absorption frequencies). California State Polytechnic University. https://www.cpp.edu/~psbeauchamp/pdf/spec_ir_nmr_spectra_tables.pdf. Accessed 29 Feb 2022

  70. Yao H, Dai Q, You Z (2015) Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr Build Mater 101(1):1078–1087. https://doi.org/10.1016/j.conbuildmat.2015.10.085

    Article  Google Scholar 

  71. Masson J-F, Pelletier L, Collins P (2001) Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J Appl Polym Sci 79(6):1034–1041. https://doi.org/10.1002/1097-4628(20010207)79:6%3c1034::AID-APP60%3e3.0.CO;2-4

    Article  Google Scholar 

  72. Zhou Q, Liang H, Wei W, Meng C, Long Y, Zhu F (2017) Synthesis of amphiphilic diblock copolymers of isotactic polystyrene-block-isotactic poly(p-hydroxystyrene) using a titanium complex with an [OSSO]-type bis(phenolate) ligand and sequential monomer addition. RSC Adv 7(32):19885–19893. https://doi.org/10.1039/C7RA01450C

    Article  Google Scholar 

  73. Yan C, Huang W, Ma J, Xu J, Lv Q, Lin P (2020) Characterizing the SBS polymer degradation within high content polymer modified asphalt using ATR-FTIR. Constr Build Mater 233:117708. https://doi.org/10.1016/j.conbuildmat.2019.117708

    Article  Google Scholar 

  74. Herrington PR (1995) Thermal decomposition of asphalt sulfoxides. Fuel 74(8):1232–1235. https://doi.org/10.1016/0016-2361(95)00039-8

    Article  Google Scholar 

  75. Ouyang C, Wang S, Zhang Y, Zhang Y (2006) Improving the aging resistance of styrene–butadiene–styrene tri-block copolymer modified asphalt by addition of antioxidants. Polym Degrad Stab 91(4):795–804. https://doi.org/10.1016/j.polymdegradstab.2005.06.009

    Article  Google Scholar 

  76. Deef-Allah E, Abdelrahman M, Hemida A (2020) Improving asphalt binder’s elasticity through controlling the interaction parameters between CRM and asphalt binder. Adv Civ Eng Mater 9(1):262–282. https://doi.org/10.1520/ACEM20190204

    Article  Google Scholar 

  77. Gavibazoo A, Abdelrahman M (2013) Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder. Int J Pavement Eng 14(5):517–530. https://doi.org/10.1080/10298436.2012.721548

    Article  Google Scholar 

  78. Jing-Song G, Wei-Biao F, Bei-Jing Z (2003) A study on the pyrolysis of asphalt. Fuel 82(1):49–52. https://doi.org/10.1016/S0016-2361(02)00136-9

    Article  Google Scholar 

  79. Zhang C, Xu T, Shi H, Wang L (2015) Physicochemical and pyrolysis properties of SARA fractions separated from asphalt binder. J Therm Anal Calorim 122(1):241–249. https://doi.org/10.1007/s10973-015-4700-3

    Article  Google Scholar 

  80. Yu H, Leng Z, Gao Z (2016) Thermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additives. Constr Build Mater 125:168–174. https://doi.org/10.1016/j.conbuildmat.2016.08.032

    Article  Google Scholar 

  81. Sugano M, Iwabuchi Y, Watanabe T, Kajita J, Iwai S, Hirano K (2009) Thermal degradation mechanism of polymer modified asphalt. Chem Eng Trans 18:839–844. https://doi.org/10.3303/CET0918137

    Article  Google Scholar 

  82. Masson J-F, Polomark GM, Collins P (2002) Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuels 16(2):470–476. https://doi.org/10.1021/ef010233r

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Missouri Department of Transportation (MoDOT), as well as Dr. William Buttlar and his research group at the University of Missouri, for supplying field samples and pertinent information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eslam Deef-Allah.

Ethics declarations

Conflict of interest

This study was funded by MoDOT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deef-Allah, E., Abdelrahman, M. Thermal, chemical and rheological properties of asphalt binders extracted from field cores. Innov. Infrastruct. Solut. 7, 235 (2022). https://doi.org/10.1007/s41062-022-00836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00836-6

Keywords

Navigation