Skip to main content
Log in

Glycosyl Sulfoxides in Glycosylation Reactions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Carbohydrate chemistry has benefited a lot from the intrinsic reactivity of sulfoxide since it was introduced in glycosylation reactions by Kahne in 1989. Since then, extensive studies have been explored by employing sulfoxide as glycosyl donors and activation reagents in construction of glycosidic bonds. As glycosyl donors, the sulfinyl groups could locate either directly or remotely at anomeric position. This chapter focuses on the establishment and development of sulfoxides as glycosyl donors in glycosylation reactions, with an emphasis on their applications and postulated mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43

Similar content being viewed by others

Abbreviations

ADMB:

4-allyl-1,2-dimethoxybenzene

CB:

Carboxybenzyl

CIPs:

Contact ion pairs

DDQ:

2,3-dicyano-5,6-dichlorobenzoquinone

DIPEA:

N,N-diisopropylethylamine

DMAP:

4-dimethylaminopyridine

DMDO:

Dimethyldioxirane

DTBMP:

2,6-di-tert-butyl-4-methylpyridine

E:

Electrophile

Fmoc:

9-Fluorenylmethyl

IAD:

Intramolecular aglycon delivery

LAH:

Lithium aluminum hydride

mCPBA:

3-chloroperbenzoic acid

MOM:

Methoxymethyl

Nap:

Naphthyl

NMP:

N-methyl-2-pyrrolidone

Nu:

Nucleophile

Piv:

Pivaloyl

PMB:

p-methoxybenzyl

PSB:

2-[(propan-2-yl)sulfinyl]benzyl

PTB:

2-[(propan-2-yl)thio]benzyl

SSIPs:

Solven-separated ion pairs

TBDPS:

tert-Butyldiphenylsilyl

TBS:

t-butyldimethylsilyl

TCP:

N-tetrachlorophthalimido

Tf2O:

Trifluoromethanesulfonic anhydride

TFAP:

3-trifluoroacetamidopropyl

TfOH:

Trifluoromethanesulfonic acid

TMP:

1,3,5-trimethoxybenzene

TMSE:

2-(trimethylsilyl)ethyl

TMSOTf:

Trimethylsilyl trifluoromethanesulfonate

TTBP:

2,4,5-tri-tert-butylpyrimidine

β-hFSH:

β-domain of human follicle-stimulating hormone

References

  1. Willer R (2000) Sulfoxides, in Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, Hoboken

    Google Scholar 

  2. Pummerer R (1909) Über phenyl-sulfoxyessigsäure. Ber Dtsch Chem Ges 42:2282–2291

    Article  CAS  Google Scholar 

  3. Smith LHS, Coote SC, Sneddon HF, Procter DJ (2010) Beyond the Pummerer reaction: recent developments in thionium ion chemistry. Angew Chem Int Ed 49:5832–5844

    Article  CAS  Google Scholar 

  4. Akai S, Kita Y (2006) Recent advances in Pummerer reactions. In: Schaumann E (ed) Sulfur-mediated rearrangements I. Top curr chem, vol 274. Springer, Berlin

    Google Scholar 

  5. Feldman KS (2006) Modern Pummerer-type reactions. Tetrahedron 62:5003–5034

    Article  CAS  Google Scholar 

  6. Bur SK, Padwa A (2004) The Pummerer reaction: methodology and strategy for the synthesis of heterocyclic compounds. Chem Rev 104:2401–2432

    Article  CAS  PubMed  Google Scholar 

  7. Pfitzner KE, Moffatt JG (1963) A new and selective oxidation of alcohols. J Am Chem Soc 85:3027–3028

    Google Scholar 

  8. Omura K, Swern D (1978) Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study. Tetrahedron 34:1651–1660

    Article  CAS  Google Scholar 

  9. Evans DA, Andrews GC (1974) Allylic sulfoxides. Useful intermediates in organic synthesis. Acc Chem Res 7:147–155

    Article  CAS  Google Scholar 

  10. Carreno MC (1995) Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem Rev 95:1717–1760

    Article  CAS  Google Scholar 

  11. Kahne D, Walker S, Cheng Y, Van Engen D (1989) Glycosylation of unreactive substrates. J Am Chem Soc 111:6881–6882

    Article  CAS  Google Scholar 

  12. Aversa MC, Barattucci A, Bonaccorsi P (2008) Glycosulfoxides in carbohydrate chemistry. Tetrahedron 64:7659–7683

    Article  CAS  Google Scholar 

  13. Fascione MA, Brabham R, Turnbull WB (2016) Mechanistic investigations into the application of sulfoxides in carbohydrate synthesis. Chem Eur J 22:3916–3928

    Article  CAS  PubMed  Google Scholar 

  14. Crich D, Bowers AA (2008) Sulfoxides, sulfimides and sulfones. In: Demchenko AV (ed) Handbook of chemical glycosylation. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, pp 303–329

    Google Scholar 

  15. Micheel F, Schmitz H (1939) Das verhalten von sulfoxyden gegenüber sulfit. Ber Dtsch Chem Ges 72:992–994

    Article  Google Scholar 

  16. Khiar N, Alonso I, Rodriguez N, Fernandez-Mayoralas A, Jimenez-Barbero J, Nieto O, Cano F, Foces-Foces C, Martin-Lomas M (1997) Chemical and enzymatic diastereoselective cleavage of β-d-galactopyranosylsulfoxides. Tetrahedron Lett 38:8267–8270

    Article  CAS  Google Scholar 

  17. Ferrières V, Joutel J, Boulch R, Roussel M, Toupet LC, Plusquellec D (2000) Sulfur atom configuration of sulfinyl galactofuranosides determines different reactivities in glycosylation reactions. Tetrahedron Lett 41:5515–5519

    Article  Google Scholar 

  18. Karthaus O, Shoda S-I, Kobayashi S (1994) Diastereoselective cleavage of β-glucosylsulfoxides by β-glucosidase. Tetrahedron Asymmetry 5:2213–2216

    Article  CAS  Google Scholar 

  19. Moya-Lopez JF, Elhalem E, Recio R, Alvarez E, Fernandez I, Khiar N (2015) Studies on the diastereoselective oxidation of 1-thio-β-d-glucopyranosides: synthesis of the usually less favoured RS sulfoxide as a single diastereoisomer. Org Biomol Chem 13:1904–1914

    Article  CAS  PubMed  Google Scholar 

  20. Raghavan S, Kahne D (1993) A one-step synthesis of the ciclamycin trisaccharide. J Am Chem Soc 115:1580–1581

    Article  CAS  Google Scholar 

  21. Gildersleeve J, Smith A, Sakurai K, Raghavan S, Kahne D (1999) Scavenging byproducts in the sulfoxide glycosylation reaction: application to the synthesis of ciclamycin 0. J Am Chem Soc 121:6176–6182

    Article  CAS  Google Scholar 

  22. Crich D, Sun S (1997) Are glycosyl triflates intermediates in the sulfoxide glycosylation method? A chemical and 1H, 13C, and 19F NMR spectroscopic investigation. J Am Chem Soc 119:11217–11223

    Article  CAS  Google Scholar 

  23. Crich D, Sun S (1998) Direct formation of β-mannopyranosides and other hindered glycosides from thioglycosides. J Am Chem Soc 120:435–436

    Article  CAS  Google Scholar 

  24. Martichonok V, Whitesides GM (1996) A practical method for the synthesis of sialyl α-glycosides. J Am Chem Soc 118:8187–8191

    Article  CAS  Google Scholar 

  25. Martichonok V, Whitesides GM (1997) Studies on α-sialylation using sialyl donors with an auxiliary 3-thiophenyl group. Carbohy Res 302:123–129

    Article  CAS  Google Scholar 

  26. Lian G, Zhang X, Yu B (2015) Thioglycosides in carbohydrate research. Carbohydr Res 403:13–22

    Article  CAS  PubMed  Google Scholar 

  27. Shiao TC, Roy R (2010) “Active-latent” thioglycosyl donors and acceptors in oligosaccharide syntheses. In: Fraser-Reid B, Cristóbal LJ (eds) Reactivity tuning in oligosaccharide assembly. Top curr chem, 301st edn. Springer, Berlin, pp 69–108

    Chapter  Google Scholar 

  28. Gildersleeve J, Pascal RA, Kahne D (1998) Sulfenate intermediates in the sulfoxide glycosylation reaction. J Am Chem Soc 120:5961–5969

    Article  CAS  Google Scholar 

  29. Sliedregt LAJM, van der Marel GA, van Boom JH (1994) Trimethylsilyl triflate mediated chemoselective condensation of arylsulfenyl glycosides. Tetrahedron Lett 35:4015–4018

    Article  CAS  Google Scholar 

  30. Alonso I, Khiar N, Martín-Lomas M (1996) A new promoter system for the sulfoxide glycosylation reaction. Tetrahedron Lett 37:1477–1480

    Article  CAS  Google Scholar 

  31. Marsh SJ, Kartha KPR, Firld RA (2003) Observation on iodine-promoted & β-mannosylation. Syn Lett 2003:1376–1378

    Google Scholar 

  32. Wipf P, Reeves JT (2001) Glycosylation via Cp2ZrCl2/AgClO4-mediated activation of anomeric sulfoxides. J Org Chem 66:7910–7914

    Article  CAS  PubMed  Google Scholar 

  33. Nagai H, Matsumura S, Toshima K (2000) A novel promoter, heteropoly acid, mediated chemo- and stereoselective sulfoxide glycosidation reactions. Tetrahedron Lett 41:10233–10237

    Article  CAS  Google Scholar 

  34. Nagai H, Kawahara K, Matsumura S, Toshima K (2001) Novel stereocontrolled α- and β-glycosidations of mannopyranosyl sulfoxides using environmentally benign heterogeneous solid acids. Tetrahedron Lett 42:4159–4162

    Article  CAS  Google Scholar 

  35. Palanivel A, Chennaiah A, Dubbu S, Mallick A, Vankar YD (2017) AuCl3–AgOTf promoted O-glycosylation using anomeric sulfoxides as glycosyl donors at room temperature. Carbohydr Res 437:43–49

    Article  CAS  PubMed  Google Scholar 

  36. Stork G, Kim G (1992) Stereocontrolled synthesis of disaccharides via the temporary silicon connection. J Am Chem Soc 114:1087–1088

    Article  CAS  Google Scholar 

  37. Stork G, La Clair JJ (1996) Stereoselective synthesis of β-mannopyranosides via the temporary silicon connection method. J Am Chem Soc 118:247–248

    Article  CAS  Google Scholar 

  38. Chung SK, Park KH (2001) A novel approach to the stereoselective synthesis of β-d-mannopyranosides. Tetrahedron Lett 42:4005–4007

    Article  CAS  Google Scholar 

  39. Gu ZY, Zhang JX, Xing GW (2012) N-Acetyl-5-N,4-O-oxazolidinone-protected sialyl sulfoxide: an α-selective sialyl donor with Tf2O/(Tol)2SO in dichloromethane. Chem Asian J 7:1524–1528

    Article  CAS  PubMed  Google Scholar 

  40. Gadikota RR, Callam CS, Lowary TL (2001) Stereocontrolled synthesis of 2,3-anhydro-β-d-lyxofuranosyl glycosides. Org Lett 3:607–610

    Article  CAS  PubMed  Google Scholar 

  41. Gadikota RR, Callam CS, Wagner T, Del Fraino B, Lowary TL (2003) 2,3-Anhydro sugars in glycoside bond synthesis. Highly stereoselective syntheses of oligosaccharides containing α- and β-arabinofuranosyl linkages. J Am Chem Soc 125:4155–4165

    Article  CAS  PubMed  Google Scholar 

  42. Callam CS, Gadikota RR, Krein DM, Lowary TL (2003) 2,3-Anhydrosugars in glycoside bond synthesis. NMR and computational investigations into the mechanism of glycosylations with 2,3-anhydrofuranosyl glycosyl sulfoxides. J Am Chem Soc 125:13112–13119

    Article  CAS  PubMed  Google Scholar 

  43. Bai Y, Lowary TL (2006) 2,3-Anhydrosugars in glycoside bond synthesis. Application to α-d-galactofuranosides. J Org Chem 71:9658–9671

    Article  CAS  PubMed  Google Scholar 

  44. Amaya T, Takahashi D, Tanaka H, Takahashi T (2003) Synthesis of 2,3,6-trideoxysugar-containing disaccharides by cyclization and glycosidation through the sequential activation of sulfoxide and methylsulfanyl groups in a one-pot procedure. Angew Chem Ed 42:1833–1836

    Article  CAS  Google Scholar 

  45. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  46. Yan L, Taylor CM, Goodnow R, Kahne D (1994) Glycosylation on the Merrifield resin using anomeric sulfoxides. J Am Chem Soc 116:6953–6954

    Article  CAS  Google Scholar 

  47. Liang R, Yan L, Loebach J, Ge M, Uozumi Y, Sekanina K, Horan N, Gildersleeve J, Thompson C, Smith A, Biswas K, Still WC, Kahne D (1996) Parallel Synthesis and screening of a solid phase carbohydrate library. Science 274:1520–1522

    Article  CAS  PubMed  Google Scholar 

  48. Silva DJ, Wang H, Allanson NM, Jain RK, Sofia MJ (1999) Stereospecific solution- and solid-phase glycosylations. Synthesis of β-linked saccharides and construction of disaccharide libraries using phenylsulfenyl 2-deoxy-2-trifluoroacetamido glycopyranosides as glycosyl donors. J Org Chem 64:5926–5929

    Article  CAS  Google Scholar 

  49. Ikemoto N, Schreiber SL (1992) Total synthesis of (−)-hikizimycin employing the strategy of two-directional chain synthesis. J Am Chem Soc 114:2524–2536

    Article  CAS  Google Scholar 

  50. Ge M, Thompson C, Kahne D (1998) Reconstruction of vancomycin by chemical glycosylation of the pseudoaglycon. J Am Chem Soc 120:11014–11015

    Article  CAS  Google Scholar 

  51. Kim SH, Augeri D, Yang D, Kahne D (1994) Concise synthesis of the calicheamicin oligosaccharide using the sulfoxide glycosylation method. J Am Chem Soc 116:1766–1775

    Article  CAS  Google Scholar 

  52. Yan L, Kahne D (1996) Generalizing glycosylation: synthesis of the blood group antigens Lea, Leb, and Lex using a standard set of reaction conditions. J Am Chem Soc 118:9239–9248

    Article  CAS  Google Scholar 

  53. Yeung BKS, Hill DC, Janicka M, Petillo PA (2000) Synthesis of two hyaluronan trisaccharides. Org Lett 2:1279–1282

    Article  CAS  PubMed  Google Scholar 

  54. Nicolaou KC, Li Y, Fylaktakidou KC, Mitchell HJ, Sugita K (2001) Total synthesis of apoptolidin: part 2. Coupling of key building blocks and completion of the synthesis. Angew Chem Ed 40:3854–3857

    Article  CAS  Google Scholar 

  55. Hederos M, Konradsson P (2005) Synthesis of the core tetrasaccharide of Trypanosoma cruzi glycoinositolphospholipids: Manp(α1 → 6)-Manp(α1 → 4)-6-(2-aminoethylphosphonic acid)-GlcNp(α1 → 6)-myo-Ins-1-PO4. J Org Chem 70:7196–7207

    Article  CAS  PubMed  Google Scholar 

  56. Taylor JG, Li X, Oberthür M, Zhu W, Kahne D (2006) The total synthesis of moenomycin A. J Am Chem Soc 128:15084–15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Fechter EJ, Wang TSA, Barrett D, Walker S, Kahne DE (2007) Synthesis of heptaprenyl-lipid IV to analyze peptidoglycan glycosyltransferases. J Am Chem Soc 129:3080–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nguyen MH, Imanishi M, Kurogi T, Smith AB (2016) Total synthesis of (−)-mandelalide A exploiting anion relay chemistry (ARC): identification of a type II ARC/CuCN cross-coupling protocol. J Am Chem Soc 138:3675–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nigudkar SS, Demchenko AV (2015) Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem Sci 6:2687–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu X, Schmidt RR (2009) New principles for glycoside-bond formation. Angew Chem Int Ed 48:1900–1934

    Article  CAS  Google Scholar 

  61. Ishiwata A, Lee YJ, Ito Y (2010) Recent advances in stereoselective glycosylation through intramolecular aglycon delivery. Org Biomol Chem 8:3596–3608

    Article  CAS  PubMed  Google Scholar 

  62. Ishiwata A, Ito Y (2017) Intramolecular aglycon delivery toward 1,2-cis selective glycosylation. In: Bennett CS (ed) Selective glycosylations: synthetic methods and catalysts, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim, pp 79–96

    Chapter  Google Scholar 

  63. Jung KH, Müller M, Schmidt RR (2000) Intramolecular O-glycoside bond formation. Chem Rev 100:4423–4442

    Article  CAS  PubMed  Google Scholar 

  64. Pistorio SG, Yasomanee JP, Demchenko AV (2014) Hydrogen-bond-mediated aglycone delivery: focus on β-mannosylation. Org Lett 16:716–719

    Article  CAS  PubMed  Google Scholar 

  65. Liu QW, Bin HC, Yang JS (2013) β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors. Org Lett 15:3974–3977

    Article  CAS  PubMed  Google Scholar 

  66. Zhu Y, Yu B (2015) Highly stereoselective β-mannopyranosylation via the 1-α-glycosyloxy-isochromenylium-4-gold(I) intermediates. Chem Eur J 21:8771–8780

    Article  CAS  PubMed  Google Scholar 

  67. Sun P, Wang P, Zhang Y, Zhang X, Wang C, Liu S, Lu J, Li M (2015) Construction of β-mannosidic bonds via gold(I)-catalyzed glycosylations with mannopyranosyl ortho-hexynylbenzoates and its application in synthesis of acremomannolipin A. J Org Chem 80:4164–4175

    Article  CAS  PubMed  Google Scholar 

  68. Elferink H, Mensink RA, White PB, Boltje TJ (2016) Angew Chem Int Ed 55:11217–11220

    Article  CAS  Google Scholar 

  69. Takahashi D, Tanaka M, Nishi N, Toshima K (2017) Novel 1,2-cis-stereoselective glycosylations utilizing organoboron reagents and their application to natural products and complex oligosaccharide synthesis. Carbohydr Res 452:64–77

    Article  CAS  PubMed  Google Scholar 

  70. Crich D, Sun S (1996) Formation of β-mannopyranosides of primary alcohols using the sulfoxide method. J Org Chem 61:4506–4507

    Article  CAS  PubMed  Google Scholar 

  71. Huang X, Huang L, Wang H, Ye XS (2004) Iterative one-pot synthesis of oligosaccharides. Angew Chem Int Ed 43:5221–5224

    Article  CAS  Google Scholar 

  72. Wu Y, Xiong DC, Chen SC, Wang YS, Ye XS (2017) Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat Commun 8:14851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Crich D, Sun S (1997) Direct synthesis of β-mannopyranosides by the sulfoxide method. J Org Chem 62:1198–1199

    Article  CAS  Google Scholar 

  74. Crich D, Li H (2000) Direct stereoselective synthesis of β-thiomannosides. J Org Chem 65:801–805

    Article  CAS  PubMed  Google Scholar 

  75. Crich D, Dudkin V (2000) Efficient, diastereoselective chemical synthesis of a β-mannopyranosyl phosphoisoprenoid. Org Lett 2:3941–3943

    Article  CAS  PubMed  Google Scholar 

  76. Crich D, Cai W (1999) Chemistry of 4,6-O-benzylidene-d-glycopyranosyl triflates: contrasting behavior between the gluco and manno series. J Org Chem 64:4926–4930

    Article  CAS  PubMed  Google Scholar 

  77. Kim KS, Kim JH, Lee YJ, Lee YJ, Park J (2001) 2-(Hydroxycarbonyl)benzyl glycosides: a novel type of glycosyl donors for highly efficient β-mannopyranosylation and oligosaccharide synthesis by latent-active glycosylation. J Am Chem Soc 123:8477–8481

    Article  CAS  PubMed  Google Scholar 

  78. Codée JDC, Kröck L, Castagner B, Seeberger PH (2008) Automated solid-phase synthesis of protected oligosaccharides containing β-mannosidic linkages. Chem Eur J 14:3987–3994

    Article  CAS  PubMed  Google Scholar 

  79. Tsuda T, Arihara R, Sato S, Koshiba M, Nakamura S, Hashimoto S (2005) Direct and stereoselective synthesis of β-d-mannosides using 4,6-O-benzylidene-protected mannosyl diethyl phosphite as a donor. Tetrahedron 61:10719–10733

    Article  CAS  Google Scholar 

  80. Baek JY, Choi TJ, Jeon HB, Kim KS (2006) A highly reactive and stereoselective β-mannopyranosylation system: mannosyl 4-pentenoate/PhSeOTf. Angew Chem Int Ed 45:7436–7440

    Article  CAS  Google Scholar 

  81. Tanaka SI, Takashina M, Tokimoto H, Fujimoto Y, Tanaka K, Fukase K (2005) Highly β-selective mannosylation towards Manβ1-4GlcNAc synthesis: tMSB(C6H5)4 as Lewis acid/cation trap catalyst. Synlett 2005:2325–2328

    Google Scholar 

  82. Heuckendorff M, Bols PS, Barry CB, Frihed TG, Pedersen CM, Bols M (2015) β-Mannosylation with 4,6-benzylidene protected mannosyl donors without preactivation. Chem Commun 51:13283–13285

    Article  CAS  Google Scholar 

  83. Crich D, Dai Z (1998) Direct synthesis of β-d-Xyl-(1 → 2)-β-d-Man-(1 → 4)-α-d-Glc-OME: a trisaccharide component of the Hyriopsis schlegelii glycosphingolipid. Tetrahedron Lett 39:1681–1684

    Article  CAS  Google Scholar 

  84. Crich D, Li H, Yao Q, Wink DJ, Sommer RD, Rheingold AL (2001) Direct synthesis of β-mannans. A hexameric [→ 3)-β-d-man-(1 → 4)-β-d-man-(1]3 subunit of the antigenic polysaccharides from Leptospira biflexa and the octameric (1 → 2)-linked β-d-mannan of the Candida albicans phospholipomannan. X-ray crystal structure of a protected tetramer. J Am Chem Soc 123:5826–5828

    Article  CAS  PubMed  Google Scholar 

  85. Karelin AA, Tsvetkov YE, Paulovičová E, Paulovičová L, Nifantiev NE (2016) A blockwise approach to the synthesis of (1 → 2)-linked oligosacchrides corresponding to fragments of the acid-stable β-mannan from the Candida albicans cell wall. Eur J Org Chem 2016:1173–1181

    Article  CAS  Google Scholar 

  86. Nagorny P, Fasching B, Li X, Chen G, Aussedat B, Danishefsky SJ (2009) Toward fully synthetic homogeneous β-human follicle-stimulating hormone (β-hFSH) with a biantennary N-linked dodecasaccharide. Synthesis of β-hFSH with chitobiose units at the natural linkage sites. J Am Chem Soc 131:5792–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim JH, Yang H, Park J, Boons GJ (2005) A general strategy for stereoselective glycosylations. J Am Chem Soc 127:12090–12097

    Article  CAS  PubMed  Google Scholar 

  88. Boltje TJ, Kim JH, Park J, Boons GJ (2011) Stereoelectronic effects determine oxacarbenium vs β-sulfonium ion mediated glycosylations. Org Lett 13:284–287

    Article  CAS  PubMed  Google Scholar 

  89. Fang T, Gu Y, Huang W, Boons GJ (2016) Mechanism of glycosylation of anomeric sulfonium ions. J Am Chem Soc 138:3002–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fascione MA, Adshead SJ, Stalford SA, Kilner CA, Leach AG, Turnbull WB (2009) Stereoselective glycosylation using oxathiane glycosyl donors. Chem Commun 2009:5841–5843

    Article  CAS  Google Scholar 

  91. Fascione MA, Kilner CA, Leach AG, Turnbull WB (2012) Do glycosyl sulfonium ions engage in neighbouring-group participation? A study of oxathiane glycosyl donors and the basis for their stereoselectivity. Chem Eur J 18:321–333

    Article  CAS  PubMed  Google Scholar 

  92. Fascione MA, Turnbull WB (2010) Benzyne arylation of oxathiane glycosyl donors. Beilstein J Org Chem 6:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fascione MA, Webb NJ, Kilner CA, Warriner SL, Turnbull WB (2012) Stereoselective glycosylations using oxathiane spiroketal glycosyl donors. Carbohydr Res 348:6–13

    Article  CAS  PubMed  Google Scholar 

  94. Fang T, Mo KF, Boons GJ (2012) Stereoselective assembly of complex oligosaccharides using anomeric sulfonium ions as glycosyl donors. J Am Chem Soc 134:7545–7552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang W, Gao Q, Boons GJ (2015) Assembly of a complex branched oligosaccharide by combining fluorous-supported synthesis and stereoselective glycosylations using anomeric sulfonium ions. Chem Eur J 21:12920–12926

    Article  CAS  PubMed  Google Scholar 

  96. Crich D (2010) Mechanism of a chemical glycosylation reaction. Acc Chem Res 43:1144–1153

    Article  CAS  PubMed  Google Scholar 

  97. Bohé L, Crich D (2017) Glycosylation with glycosyl sulfonates. In: Bennett CS (ed) Selective Glycosylations: Synthetic Methods and Catalysts. Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim, pp 115–133

    Chapter  Google Scholar 

  98. Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jiménez-Barbero J, Thibaudeau S, Blériot Y (2015) Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nature Chem 8:186–191

    Article  CAS  Google Scholar 

  99. Bohé L, Crich D (2015) A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr Res 403:48–59

    Article  CAS  PubMed  Google Scholar 

  100. Walvoort MTC, Dinkelaar J, van den Bos LJ, Lodder G, Overkleeft HS, Codée JDC, van der Marel GA (2010) The impact of oxacarbenium ion conformers on the stereochemical outcome of glycosylations. Carbohydr Res 345:1252–1263

    Article  CAS  PubMed  Google Scholar 

  101. Smith DM, Woerpel KA (2006) Electrostatic interactions in cations and their importance in biology and chemistry. Org Biomol Chem 4:1195–1201

    Article  CAS  PubMed  Google Scholar 

  102. Cumpstey I (2012) On a so-called “kinetic anomeric effect” in chemical glycosylation. Organic & Org Biomol Chem 10:2503–2508

    Article  CAS  Google Scholar 

  103. Kim KS, Fulse DB, Baek JY, Lee BY, Jeon HB (2008) Stereoselective direct glycosylation with anomeric hydroxy sugars by activation with phthalic anhydride and trifluoromethanesulfonic anhydride involving glycosyl phthalate intermediates. J Am Chem Soc 130:8537–8547

    Article  CAS  PubMed  Google Scholar 

  104. Walvoort MTC, van den Elst H, Plante OJ, Kröck L, Seeberger PH, Overkleeft HS, van der Marel GA, Codée JDC (2012) Automated solid-phase synthesis of β-mannuronic acid alginates. Angew Chem Int Ed 51:4393–4396

    Article  CAS  Google Scholar 

  105. Rencurosi A, Lay L, Russo G, Caneva E, Poletti L (2006) NMR evidence for the participation of triflated ionic liquids in glycosylation reaction mechanisms. Carbohydr Res 341:903–908

    Article  CAS  PubMed  Google Scholar 

  106. Zeng Y, Wang Z, Whitfield D, Huang X (2008) Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method. J Org Chem 73:7952–7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Frihed TG, Bols M, Pedersen CM (2015) Mechanisms of glycosylation reactions studied by low-temperature nuclear magnetic resonance. Chem Rev 115:4963–5013

    Article  CAS  PubMed  Google Scholar 

  108. Crich D, Chandrasekera NS (2004) Mechanism of 4,6-O-benzylidene-directed β-mannosylation as determined by α-deuterium kinetic isotope effects. Angew Chem Int Ed 43:5386–5389

    Article  CAS  Google Scholar 

  109. Huang M, Garrett GE, Birlirakis N, Bohé L, Pratt DA, Crich D (2012) Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects. Nature Chem 4:663–667

    Article  CAS  Google Scholar 

  110. Huang M, Furukawa T, Retailleau P, Crich D, Bohé L (2016) Further studies on cation clock reactions in glycosylation: observation of a configuration specific intramolecular sulfenyl transfer and isolation and characterization of a tricyclic acetal. Carbohydr Res 427:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang M, Retailleau P, Bohé L, Crich D (2012) Cation clock permits distinction between the mechanisms of α- and β-O- and β-C-glycosylation in the mannopyranose series: evidence for the existence of a mannopyranosyl oxocarbenium ion. J Am Chem Soc 134:14746–14749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Adero PO, Furukawa T, Huang M, Mukherjee D, Retailleau P, Bohé L, Crich D (2015) Cation clock reactions for the determination of relative reaction kinetics in glycosylation reactions: applications to gluco- and mannopyranosyl sulfoxide and trichloroacetimidate type donors. J Am Chem Soc 137:10336–10345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shu P, Xiao X, Zhao Y, Xu Y, Yao W, Tao J, Wang H, Yao G, Lu Z, Zeng J, Wan Q (2015) Interrupted Pummerer reaction in latent-active glycosylation: glycosyl donors with a recyclable and regenerative leaving group. Angew Chem Int Ed 54:14432–14436

    Article  CAS  Google Scholar 

  114. Xiao X, Zhao Y, Shu P, Zhao X, Liu Y, Sun J, Zhang Q, Zeng J, Wan Q (2016) Remote activation of disarmed thioglycosides in latent-active glycosylation via interrupted Pummerer reaction. J Am Chem Soc 138:13402–13407

    Article  CAS  PubMed  Google Scholar 

  115. Shu P, Yao W, Xiao X, Sun J, Zhao X, Zhao Y, Xu Y, Tao J, Yao G, Zeng J, Wan Q (2016) Glycosylation via remote activation of anomeric leaving groups: development of 2-(2-propylsulfinyl)benzyl glycosides as novel glycosyl donors. Org Chem Front 3:177–183

    Article  CAS  Google Scholar 

  116. Meng L, Zeng J, Wan Q (2017) Interrupted Pummerer reaction in lacent/active glycosylation. Synlett 2017. https://doi.org/10.1055/s-0036-1588582

  117. Bates DK, Winters RT, Picard JA (1992) Intramolecular capture of Pummerer rearrangement intermediates. Interrupted Pummerer rearrangement: capture of tricoordinate sulfur species generated under Pummerer rearrangement conditions. J Org Chem 57:3094–3097

    Article  CAS  Google Scholar 

  118. Bates DK, Xia M (1998) A sulfoxide-based ring annelation approach to fused, many-membered ring N,S-heterocycles. J Org Chem 63:9190–9196

    Article  CAS  Google Scholar 

  119. Bates DK, Sell BA, Picard JA (1987) An interrupted Pummerer reaction induced by Vilsmeier reagent (POCl3/DMF). Tetrahedron Lett 28:3535–3538

    Article  CAS  Google Scholar 

  120. Zeng J, Sun G, Yao W, Zhu Y, Wang R, Cai L, Liu K, Zhang Q, Liu XW, Wan Q (2017) 3-Aminodeoxypyranoses in glycosylation: diversity-oriented synthesis and assembly in oligosaccharides. Angew Chem Int Ed 56:5227–5231

    Article  CAS  Google Scholar 

  121. Xu Y, Zhang Q, Xiao Y, Wu P, Chen W, Song Z, Xiao X, Meng L, Zeng J, Wan Q (2017) Practical synthesis of latent disarmed S-2-(2-propylthio)benzyl glycosides for interrupted Pummerer reaction mediated glycosylation. Tetrahedron Lett 58:2381–2384

    Article  CAS  Google Scholar 

  122. Chen W, Zeng J, Wang H, Xiao X, Meng L, Wan Q (2017) Tracking the leaving group in the remote activation of O-2-[(propan-2-yl)sulfinyl]benzyl (OPSB) glycoside. Carbohydr Res 452:1–5

    Article  CAS  PubMed  Google Scholar 

  123. Kristensen SK, Salamone S, Rasmussen MR, Marqvorsen MHS, Jensen HH (2016) Glycosyl ortho-methoxybenzoates: catalytically activated glycosyl donors with an easily removable and recyclable leaving group. Eur J Org Chem 2016:5365–5376

    Article  CAS  Google Scholar 

  124. Nigudkar SS, Stine KJ, Demchenko AV (2014) Regenerative glycosylation under nucleophilic catalysis. J Am Chem Soc 136:921–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Garcia BA, Poole JL, Gin DY (1997) Direct glycosylations with 1-hydroxy glycosyl donors using trifluoromethanesulfonic anhydride and diphenyl sulfoxide. J Am Chem Soc 119:7597–7598

    Article  CAS  Google Scholar 

  126. Codée JDC, Hossain LH, Seeberger PH (2005) Efficient installation of β-mannosides using a dehydrative coupling strategy. Org Lett 7:3251–3254

    Article  CAS  PubMed  Google Scholar 

  127. Boebel TA, Gin DY (2005) Probing the mechanism of sulfoxide-catalyzed hemiacetal activation in dehydrative glycosylation. J Org Chem 70:5818–5826

    Article  PubMed  Google Scholar 

  128. Di Bussolo V, Kim YJ, Gin DY (1998) Direct oxidative glycosylations with glycal gonors. J Am Chem Soc 120:13515–13516

    Article  Google Scholar 

  129. Honda E, Gin DY (2002) C2-Hydroxyglycosylation with glycal gonors. probing the mechanism of sulfonium-mediated oxygen transfer to glycal enol ethers. J Am Chem Soc 124:7343–7352

    Article  CAS  PubMed  Google Scholar 

  130. Crich D (2002) Chemistry of glycosyl triflates: synthesis of & β-mannopyranosides. J Carbohydr Chem 21:667–690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (21672077, 21772050, 21472054, 21702068), the State Key Laboratory of Bioorganic and Natural Products Chemistry (SKLBNPC13425), Natural Science Funds of Hubei Province for Distinguished Young Scholars (2015CFA035), Wuhan Creative Talent Development Fund, “Thousand Talents Program” Young Investigator Award, and Huazhong University of Science and Technology for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wan.

Additional information

This article is part of the Topical Collection “Sulfur Chemistry”; edited by Xuefeng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Liu, Y., Chen, W. et al. Glycosyl Sulfoxides in Glycosylation Reactions. Top Curr Chem (Z) 376, 27 (2018). https://doi.org/10.1007/s41061-018-0205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0205-4

Keywords

Navigation