Skip to main content

Advertisement

Log in

Towards Synergistic Electrode–Electrolyte Design Principles for Nonaqueous Li–O\(_2\) batteries

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium–oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium–oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode–electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li\(_2\)O\(_2\), and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte–electrode formulations is needed to realize a practical Li–O\(_2\) battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams E (2017) The age of electric aviation is just 30 years away. https://www.wired.com/2017/05/electric-airplanes-2/. Accessed 6 July 2017

  2. Sapunkov O, Pande V, Khetan A, Choomwattana C, Viswanathan V (2015) Quantifying the promise of ‘beyond’ Li-ion batteries. Transl Mater Res 2(4):045002

  3. Moore MD, Fredericks B (2014) Misconceptions of electric propulsion aircraft and their emergent aviation markets. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140011913.pdf

  4. Hepperle M (2012) Electric flight-potential and limitations. https://www.mh-aerotools.de/company/paper_14/MP-AVT-209-09.pdf

  5. Girishkumar G, McCloskey BD, Luntz AC, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  6. Luntz AC, McCloskey BD (2014) Nonaqueous Li–Air batteries: a status report. Chem Rev 114(23):11721–11750

    Article  CAS  Google Scholar 

  7. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5

    Article  CAS  Google Scholar 

  8. Albertus P, Lohmann T, Christensen J (2014) Overview of \(LiO_2\) battery systems, with a focus on oxygen handling requirements and technologies. Springer, New York, pp 291–310

  9. Kerman K, Luntz A, Viswanathan V, Chiang Yet-Ming, Chen Zhebo (2017) Practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc 164(7):A1731–A1744

  10. Aurbach D, McCloskey BD, Nazar LF, Bruce PG (2016) Advances in understanding mechanisms underpinning lithium–air batteries. Nat Energy 1:16128

  11. Manthiram Arumugam, Xingwen Yu, Wang Shaofei (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  CAS  Google Scholar 

  12. Younesi R, Hahlin M, Roberts M, Edström K (2013) The SEI layer formed on lithium metal in the presence of oxygen: a seldom considered component in the development of the Li-O\(_2\) battery. J Power Sources 225:40–45

  13. Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium–air battery electrolytes. Phys Chem Chem Phys 16:2801–2822

    Article  CAS  Google Scholar 

  14. Lu Y, Gallant B, Kwabi D, Harding J, Mitchell R, Whittingham M, Shao-Horn Y (2013) Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci 6:750–768

    Article  CAS  Google Scholar 

  15. McCloskey BD, Bethune D, Shelby R, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) Limitations in rechargeability of Li-O\(_2\) batteries and possible origins. J Phys Chem Lett 3(20):3043–3047

    Article  CAS  Google Scholar 

  16. McCloskey BD, Scheffler R, Speidel A, Girishkumar G, Luntz AC (2012) On the mechanism of nonaqueous Li-O\(_2\) electrochemistry on C and its kinetic overpotentials: some implications for Li–Air batteries. J Phys Chem C 116(45):23897–23905

    Article  CAS  Google Scholar 

  17. McCloskey B, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li-O\(_2\) batteries. J.Phys Chem Lett 3(8):997–1001

    Article  CAS  Google Scholar 

  18. McCloskey BD, Valery A, Luntz AC, Gowda SR, Wallraff GM, Garcia JM, Mori T, Krupp LE (2013) Combining accurate O\(_2\) and Li\(_2\)O\(_2\) assays to separate discharge and charge stability limitations in nonaqueous Li–O\(_2\) batteries. J Phys Chem Lett 4(17):2989–2993

    Article  CAS  Google Scholar 

  19. Uta SK, Metzger M, Restle T, Piana M, Gasteiger HA (2015) The influence of water and protons on Li\(_2\)O\(_2\) crystal growth in aprotic Li–O\(_2\) cells. J Electrochem Soc 162(4):A573–A584

  20. Lyu Z, Zhou Y, Dai W, Cui X, Lai M, Wang L, Huo F, Huang W, Zheng H, Chen W (2017) Recent advances in understanding of the mechanism and control of Li\(_2\)O\(_2\) formation in aprotic Li-O\(_2\) batteries. Chem Soc Rev 46:6046–6072

    Article  CAS  Google Scholar 

  21. Khetan A, Pitsch H, Viswanathan V (2014) Identifying descriptors for solvent stability in nonaqueous Li–O\(_2\) batteries. J Phys Chem Lett 5(8):1318–1323

    Article  CAS  Google Scholar 

  22. Kahn A, Koch N, Gao W (2003) Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J Polym Sci Part B Polym Phys 41(21):2529–2548

  23. Repp J, Meyer G, Stojković SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94:026803

    Article  Google Scholar 

  24. Neaton J, Hybertsen M, Louie S (2006) Renormalization of molecular electronic levels at metal–molecule interfaces. Phys Rev Lett 97:216405

    Article  CAS  Google Scholar 

  25. Garcia-Lastra JM, Rostgaard C, Rubio A, Thygesen KS (2009) Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces. Phys Rev B 80:245427

    Article  Google Scholar 

  26. Garcia-Lastra JM, Thygesen KS (2011) Renormalization of optical excitations in molecules near a metal surface. Phys Rev Lett 106:187402

    Article  CAS  Google Scholar 

  27. Kumar N, Siegel DJ (2016) Interface-induced renormalization of electrolyte energy levels in magnesium batteries. J Phys Chem Lett 7(5):874–881

    Article  CAS  Google Scholar 

  28. Khetan A, Pitsch H, Viswanathan V (2017) Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous Li–O\(_2\) batteries. arXiv:1705.03862

  29. Johnson R III (2013) NIST 101: Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov

  30. Sharon D, Afri M, Noked M, Garsuch A, Frimer AF, Aurbach D (2013) Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J Phys Chem Lett 4(18):3115–3119

    Article  CAS  Google Scholar 

  31. Kwabi DG, Batcho TP, Amanchukwu CV, Ortiz-Vitoriano N, Hammond P, Thompson CV, Shao-Horn Y (2014) Chemical instability of dimethyl sulfoxide in lithium–air batteries. J Phys Chem Lett 1(5):2850–2856

    Article  Google Scholar 

  32. Luntz AC, Viswanathan V, Voss J, Varley JB, Nørskov JK, Scheffler R, Speidel A (2013) Tunneling and polaron charge transport through Li\(_2\)O\(_2\) in Li-O\(_2\) batteries. J Phys Chem Lett 4(20):3494–3499

    Article  CAS  Google Scholar 

  33. Bryantsev VS, Blanco M (2011) Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2(5):379–383

    Article  CAS  Google Scholar 

  34. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O\(_{2}^{.-}\)). J Phys Chem A 115(44):12399–12409

  35. Bryantsev VS, Faglioni F (2012) Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. J Phys Chem A 116(26):7128–7138

  36. Bryantsev VS (2013) Predicting the stability of aprotic solvents in Li-air batteries: pK a calculations of aliphatic C–H acids in dimethyl sulfoxide. Chem Phys Lett 558:42–47

  37. Bryantsev VS, Uddin J, Giordani V, Walker W, Addison D, Chase GV (2013) The identification of stable solvents for nonaqueous rechargeable Li–air batteries. J Electrochem Soc 160(1):A160–A171

  38. Khetan A, Pitsch H, Viswanathan V (2014) Solvent degradation in nonaqueous Li-O\(_2\) batteries: oxidative stability versus H-abstraction. J Phys Chem Lett 5(14):2419–2424

  39. Khetan A, Luntz AC, Viswanathan V (2015) Trade-offs in capacity and rechargeability in nonaqueous Li-O\(_2\) batteries: solution-driven growth versus nucleophilic stability. J Phys Chem Lett 6(7):1254–1259

    Article  CAS  Google Scholar 

  40. Sawyer D, Chiericato G, Angelis C, Nanni E, Tsuchiya T (1982) Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal Chem 54(11):1720–1724

    Article  CAS  Google Scholar 

  41. Gritzner G (1990) Polarographic half-wave potentials of cations in nonaqueous solvents. Pure Appl Chem 62(9):1839–1858

    Article  CAS  Google Scholar 

  42. Gritzner G, Lewandowski A (1991) Temperature coefficients of half-wave potentials and entropies of transfer of cations in aprotic solvents. J Chem Soc 87:2599–2602

    CAS  Google Scholar 

  43. Jaworski JS, Malik M, Kalinowski MK (1992) Solvent effect on the Hammett reaction constant for the electroreduction of substituted benzophenones. J Phys Org Chem 5(9):590–594

  44. Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22(6):409–416

    Article  CAS  Google Scholar 

  45. Connelly N, Geiger W (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96(2):877–910

    Article  CAS  Google Scholar 

  46. Johnson L, Li C, Liu Z, Chen Y, Freunberger SA, Ashok PC, Praveen BB, Dholakia K, Tarascon J, Bruce PG (2014) The role of LiO\(_2\) solubility in O\(_2\) reduction in aprotic solvents and its consequences for Li-O\(_2\) batteries. Nat Chem 6(12):1091–1099

    Article  CAS  Google Scholar 

  47. Aetukuri N, McCloskey BD, Krupp LE, Viswanathan V, Luntz AC (2015) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O\(_2\) batteries. Nat Chem 7(1):50–56

  48. Gallant BM, Mitchell RR, Kwabi DG, Zhou J, Zuin L, Thompson CV, Shao-Horn Y (2012) Chemical and morphological changes of Li-O\(_2\) battery electrodes upon cycling. J Phys Chem C 116(39):20800–20805

    Article  CAS  Google Scholar 

  49. Fan W, Cui Z, Guo X (2013) Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li-O\(_2\) cells. J Phys Chem C 117(6):2623–2627

    Article  CAS  Google Scholar 

  50. Adams B, Radtke C, Black R, Trudeau M, Zaghib K, Nazar L (2013) Current density dependence of peroxide formation in the Li-O\(_2\) battery and its effect on charge. Energy Environ Sci 6:1772–1778

    Article  CAS  Google Scholar 

  51. Mitchell RR, Gallant BM, Shao-Horn Y, Thompson CV (2013) Mechanisms of morphological evolution of Li\(_2\)O\(_2\) particles during electrochemical growth. J Phys Chem Lett 4(7):1060–1064

    Article  CAS  Google Scholar 

  52. Gallant BM, Kwabi DG, Mitchell RR, Zhou J, Thompson CV, Shao-Horn Y (2013) Influence of Li\(_2\)O\(_2\) morphology on oxygen reduction and evolution kinetics in Li-O\(_2\) batteries. Energy Environ Sci 6:2518–2528

    Article  CAS  Google Scholar 

  53. Safari M, Adams B, Nazar L (2014) Kinetics of oxygen reduction in aprotic Li-O\(_2\) cells: a model-based study. J Phys Chem Lett 5(20):3486–3491

    Article  CAS  Google Scholar 

  54. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) Elucidating the mechanism of oxygen reduction for lithium–air battery applications. J Phys Chem C 113(46):20127–20134

    Article  CAS  Google Scholar 

  55. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J Phys Chem C 114(19):9178–9186

    Article  CAS  Google Scholar 

  56. Schwenke KU, Meini S, Wu X, Gasteiger HA, Piana M (2013) Stability of superoxide radicals in glyme solvents for non-aqueous Li-O\(_2\) battery electrolytes. Phys Chem Chem Phys 15(28):11830–11839

    Article  CAS  Google Scholar 

  57. Burke CM, Pande V, Khetan A, Viswanathan V, McCloskey BD (2015) Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O\(_2\) battery capacity. PNAS 112(30):9293–9298

    Article  CAS  Google Scholar 

  58. Walker W, Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D (2013) A rechargeable Li-O\(_2\) battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J Am Chem Soc 135(6):2076–2079

  59. Kang SJ, Mori T, Narizuka S, Wilcke W, Kim H (2014) Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium–oxygen cells. Nat Commun 5:3937

  60. Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer A, Sun Y, Aurbach D (2015) Catalytic behavior of lithium nitrate in Li-O\(_2\) cells. ACS Appl Mater Interf 7(30):16590–16600

    Article  CAS  Google Scholar 

  61. Sharon D, Hirsberg D, Salama M, Afri M, Frimer A, Noked M, Kwak W, Sun Y, Aurbach D (2016) Mechanistic role of Li\(^+\) dissociation level in aprotic Li-O\(_2\) battery. ACS Appl Mater Interf 8(8):5300–5307

    Article  CAS  Google Scholar 

  62. Iliksu M, Khetan A, Yang S, Simon U, Pitsch H, Sauer DU (2017) Elucidation and comparison of the effect of LiTFSI and LiNO\(_3\) salts on discharge chemistry in nonaqueous Li-O\(_2\) batteries. ACS Appl Mater Interf 9(22):19319–19325

    Article  CAS  Google Scholar 

  63. Norby P, Younesi R, Vegge T (2014) A new look at the stability of dimethyl sulfoxide and acetonitrile in Li-O\(_2\) batteries. ECS Electrochem Lett 3(3):A15–A18

  64. Gunasekara I, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2015) A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries. J Electrochem Soc 162(6):A1055–A1066

  65. Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger HA (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O\(_2\) batteries. Electrochem Solid-State Lett 15(4):A45–A48

  66. Staszak-Jirkovský J, Subbaraman R, Strmcnik D, Harrison KL, Diesendruck CE, Assary R, Frank O, Kobr L, Wiberg GKH, Genorio B et al (2015) Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media. ACS Catal 5(11):6600–6607

  67. Schütter C, Husch T, Korth M, Balducci A (2015) Toward new solvents for EDLCs: from computational screening to electrochemical validation. J Phys Chem C 119(24):13413–13424

  68. Balducci A, Husch T, Yilmazer ND, Korth M (2015) Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: computing infrastructure and collective properties. Phys Chem Chem Phys 17(5):3394–3401

    Article  Google Scholar 

  69. Husch T, Korth M (2015) Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents. Phys Chem Chem Phys 17(35):22596–22603

    Article  CAS  Google Scholar 

  70. Husch T, Korth M (2015) How to estimate solid-electrolyte-interphase features when screening electrolyte materials. Phys Chem Chem Phys 17(35):22799–22808

    Article  CAS  Google Scholar 

  71. Brox S, Röser S, Husch T, Hildebrand S, Fromm O, Korth M, Winter M, Cekic-Laskovic I (2016) Alternative single-solvent electrolytes based on cyanoesters for safer lithium–ion batteries. ChemSusChem 9(13):1704–1711

    Article  CAS  Google Scholar 

  72. Schütter C, Husch T, Viswanathan V, Passerini S, Balducci A, Korth M (2016) Rational design of new electrolyte materials for electrochemical double layer capacitors. J Power Sources 326:541–548

  73. Krishnamurthy D, Hansen HA, Viswanathan V (2016) Universality in nonaqueous alkali oxygen reduction on metal surfaces: implications for Li-O\(_2\) and Na-O\(_2\) batteries. ACS Energy Lett 1(1):162–168

    Article  CAS  Google Scholar 

  74. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  75. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff INJK, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556

    Article  CAS  Google Scholar 

  76. Greeley J, Rossmeisl J, Hellmann A, Nørskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chem 221(9–10):1209–1220

    Article  CAS  Google Scholar 

  77. Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon J-M, Bruce PG (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem 123(28):6475–6479

  78. Trahan MJ, Gunasekara I, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2014) Solvent-coupled catalysis of the oxygen electrode reactions in lithium-air batteries. J Electrochem Soc 161(10):A1706–A1715

    Article  CAS  Google Scholar 

  79. Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Unifying the 2e and 4e reduction of oxygen on metal surfaces. J Phys Chem Lett 3:2948–2951

    Article  CAS  Google Scholar 

  80. Abraham KM (2015) Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries. J Electrochem Soc 162(2):A3021–A3031

    Article  CAS  Google Scholar 

  81. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J Phys Chem Lett 2(10):1161–1166

    Article  CAS  Google Scholar 

  82. Lu Y-C, Gasteiger HA, Crumlin E, McGuire R, Shao-Horn Y (2010) Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J Electrochem Soc 157(9):A1016–A1025

  83. Zhang SS, Foster D, Read J (2010) Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J Power Sources 195(4):1235–1240

  84. Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85(23):235149

  85. Hummelshøj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Nørskov JK (2010) Communications: elementary oxygen electrode reactions in the aprotic Li-air battery. J Chem Phys 132(7):071101

  86. Christensen R, Hummelshøj JS, Hansen HA, Vegge T (2015) Reducing systematic errors in oxide species with density functional theory calculations. J Phys Chem C 119(31):17596–17601

    Article  CAS  Google Scholar 

  87. Koper MT (2013) Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps. J Solid State Electrochem 17(2):339–344

    Article  CAS  Google Scholar 

  88. Man IC, Su H, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165

    Article  CAS  Google Scholar 

  89. Viswanathan V, Hansen H, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2:1654–1660

    Article  CAS  Google Scholar 

  90. Hansen HA, Viswanathan V, Nørskov JK (2014) Unifying kinetic and thermodynamic analysis of 2e\(^-\) and 4e\(^-\) reduction of oxygen on metal surfaces. J Phys Chem C 118(13):6706–6718

    Article  CAS  Google Scholar 

  91. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105

    Article  CAS  Google Scholar 

  92. Thotiyl MMO, Freunberger SA, Peng Z, Chen Y, Liu Z, Bruce PG (2013) A stable cathode for the aprotic Li-O2 battery. Nat Mater 12(11):1050

  93. MMO Thoytiyl, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li-O\(_2\) cells. J Am Chem Soc 135(1):494–500

Download references

Acknowledgements

A.K., D.K., and V.V. acknowledge helpful discussions with John W. Lawson, NASA Ames Research Center. A.K. and V.V. acknowledge support from the Convergent Aeronautics Solutions (CAS) project under the NASA Aeronautics Research Mission Directorate. D.K. and V.V. also acknowledge support from the National Science Foundation CAREER award CBET-1554273, and the National Science Foundation Collaborative Research award CBET-1604898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatasubramanian Viswanathan.

Additional information

This article is part of the Topical Collection “Modeling Electrochemical Energy Storage at the Atomic Scale,” edited by Martin Korth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khetan, A., Krishnamurthy, D. & Viswanathan, V. Towards Synergistic Electrode–Electrolyte Design Principles for Nonaqueous Li–O\(_2\) batteries. Top Curr Chem (Z) 376, 11 (2018). https://doi.org/10.1007/s41061-018-0188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0188-1

Keywords

Navigation