Skip to main content

Advertisement

Log in

New Synthetic Methods for Phosphate Labeling

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The complexity of phosphorylation pathways and their downstream effects is vast. Synthetic chemistry has been working side by side with biology to develop phosphate labels for biological processes involving phosphorylated compounds. This chapter discusses recently employed methods for the preparation of several phosphate labels. Synthesis of biomolecules and their analogs and other useful or potentially useful phosphate derivatives is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 3
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Fig. 4
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44

Similar content being viewed by others

Abbreviations

A:

Adenosine

Ade:

Adenine

ATP:

Adenosine triphosphate

B:

Nucleobase

BMF4TPA:

Bis(difluoromethylene)triphosphoric acid

BMT:

Bismethylene triphosphate

Boc:

Tert-Butyloxycarbonyl

Bop:

Bis(2-oxo-3-oxazolidinyl)phosphinic

BP :

Protected nucleobase

BTT:

5-Benzylthio-1-H-tetrazole

C:

Cytosine

CDI:

Carbodiimidazole

CE:

β-Cyanoethyl

CEM:

Cyanooxymethyl

CMPT:

N-(cyanomethyl)pyrrolidinium triflate

CPG:

Controlled pore glass

CTP:

Cytidine triphosphate

Cyt:

Cytidine

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCA:

Dichloroacetic acid

DCI:

4,5-Dicyanoimidazole

DEAE:

Diethylaminoethyl

DIAD:

Diisopropyl azodicarboxylate

DIPEA:

Diisopropylethylamine

DMAN:

1,8-Bis-(dimethylamino)naphthalene

DMF:

N,N-dimethylformamide

DMS:

Dimethylsulfide

DMTr:

4,4′-Dimethoyxltrityl

DTD:

N,N-dimethylthiuram disulfide

EC50 :

Half maximal effective concentration

EDC/EDCI:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

ETT:

5-(Ethylthio)-1H-tetrazole

Fm:

9-Fluorenylmethyl

Fmoc:

Fluorenylmethyloxycarbonyl

G:

Guanosine

Gua:

Guanine

IC50 :

Half maximal inhibitor concentration

IEX-HPLC:

Ion-exchange high performance liquid chromatography

KHMDS:

Hexamethyldisilazide

LTMPA:

Lithium 2,2,6,6-tetramethylpiperidine amide

NHS:

N-hydroxysuccinimide

NMP:

Nucleoside monophosphate

Npn :

Nucleoside polyphosphate

NpnN:

Dinucleotide polyphosphate

NPP:

Nucleotide pyrophosphatase/phosphodiesterase

Ns:

Nosyl

NTP:

Nucleoside triphosphate

NTP:

Nucleoside triphosphate

Nuc:

Nucleotide or nucleoside

ODN:

Oligodeoxynucleotides

ORN:

Oligoribonucleotide

OTP:

Oxathiaphospholane

PEP:

Phosphoenolpyruvate

Pip:

Piperidine

PK:

Pyruvate dinase

ppGpp:

Guanosin-3′,5′-bispyrophosphate

ppp:

RNA 5′-triphosphate RNAs

PRR:

Pattern recognition receptors

Py:

Pyridine

RP18:

Reverse phase C18

RSH:

RelA-SpoT homolog

SAX:

Strong anion exchange

T:

Thymine

TBAF:

Tetrabutylammonium fluoride

TBHP:

tert-Butylhydroperoxide

TBS:

tert-Butyldimethylsilyl

TEA:

Triethylamine

TEAB:

Triethylammonium bicarbonate

Tf:

Trifluoromethylsulfonyl

THF:

Tetrahydrofuran

Thy:

Thymidine

TMS:

Trimethylsilyl

Tr:

2,4,6-Triisopropylbenzenesulfonyl

Ts:

p-Toluenesulfonyl

U:

Uridine

Ura:

Uracil

UTP:

Uridine triphosphate

References

  1. Elliott TS, Slowey A, Ye Y, Conway SJ (2012) The use of phosphate bioisosteres in medicinal chemistry and chemical biology. Med Chem Commun 3:735–751. doi:10.1039/c2md20079

    Article  CAS  Google Scholar 

  2. Staab HA (1962) New methods of preparative organic chmistry IV. Syntheses using heterocyclic amides (azolides). Angew Chem Int Ed 1:351–367

    Article  Google Scholar 

  3. Russell MA, Laws AP, Atherton JH, Page MI (2008) The mechanism of the phosphoramidite synthesis of polynucleotides. Org Biomol Chem 6:3270–3275. doi:10.1039/b808999j

    Article  CAS  Google Scholar 

  4. Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178

    Article  CAS  Google Scholar 

  5. Rao F, Cha J, Xu J et al (2014) Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 54:119–132. doi:10.1016/j.molcel.2014.02.020

    Article  CAS  Google Scholar 

  6. Prasad A, Jia Y, Chakraborty A et al (2011) Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling. Nat Immunol 12:752–760. doi:10.1038/ni.2052

    Article  CAS  Google Scholar 

  7. Pulloor NK, Nair S, Kostic AD et al (2014) Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in type-I interferon response. PLoS Pathog 10:e1003981. doi:10.1371/journal.ppat.1003981.s006

    Article  CAS  Google Scholar 

  8. Choi K, Mollapour E, Choi JH, Shears SB (2008) Cellular energetic status supervises the synthesis of bis-diphosphoinositol tetrakisphosphate independently of AMP-activated protein kinase. Mol Pharmacol 74:527–536. doi:10.1124/mol.107.044628

    Article  CAS  Google Scholar 

  9. Szijgyarto Z, Garedew A, Azevedo C, Saiardi A (2011) Influence of inositol pyrophosphates on cellular energy dynamics. Science 334:802–805. doi:10.1126/science.1207306

    Article  CAS  Google Scholar 

  10. Brown NW, Marmelstein AM, Fiedler D (2016) Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 45:6311–6326. doi:10.1039/C6CS00193A

    Article  CAS  Google Scholar 

  11. Riley AM, Wang H, Shears SB, Potter BVL (2015) Chem Commun 51:12605–12608. doi:10.1039/C5CC05017K

    Article  CAS  Google Scholar 

  12. Antczak MI, Montchamp J-L (2009) Reactions of α-boranophosphorus compounds with electrophiles: alkylation, acylation, and other reactions. J Org Chem 74:3758–3766. doi:10.1021/jo900300c

    Article  CAS  Google Scholar 

  13. Antczak MI, Montchamp J-L (2008) Synthesis of 1,1-bis-phosphorus compounds from organoboranes. Tetrahedron Lett 49:5909–5913. doi:10.1016/j.tetlet.2008.07.144

    Article  CAS  Google Scholar 

  14. Gavara L, Petit C, Montchamp J-L (2012) ChemInform abstract: DBU-promoted alkylation of alkyl phosphinates and H-phosphonates. Tetrahedron Lett 53:5000–5003. doi:10.1016/j.tetlet.2012.07.019

    Article  CAS  Google Scholar 

  15. Gelat F, Lacomme C, Berger O et al (2015) Synthesis of (phosphonomethyl)phosphinate pyrophosphate analogues via the phospha-Claisen condensation. Org Biomol Chem 13:825–833. doi:10.1039/C4OB02007C

    Article  CAS  Google Scholar 

  16. Taylor SD, Mirzaei F, Bearne SL (2006) An unsymmetrical approach to the synthesis of bismethylene triphosphate analogues. Org Lett 8:4243–4246. doi:10.1021/ol0615432

    Article  CAS  Google Scholar 

  17. Medved TY, Polikarpov YM, Pisareva SA (1968) Phosphine oxides and phosphorus acids, containing several = P(O)CH2 groups in the molecule. Russ Chem Bull 17:1959–1965

    Article  Google Scholar 

  18. Hauryliuk V, Atkinson GC, Murakami KS et al (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Publ Group 13:298–309. doi:10.1038/nrmicro3448

    CAS  Google Scholar 

  19. Wexselblatt E, Katzhendler J, Saleem-Batcha R et al (2010) ppGpp analogues inhibit synthetase activity of Rel proteins from Gram-negative and Gram-positive bacteria. Bioorg Med Chem 18:4485–4497. doi:10.1016/j.bmc.2010.04.064

    Article  CAS  Google Scholar 

  20. Engelsma SB, Meeuwenoord NJ, Overkleeft HS et al (2017) Combined phosphoramidite-phosphodiester reagents for the synthesis of methylene bisphosphonates. Angew Chem Int Ed 56:2955–2959. doi:10.1002/ange.201611878

    Article  CAS  Google Scholar 

  21. Oka N, Shimizu M, Saigo K, Wada T (2006) 1,3-Dimethyl-2-(3-nitro-1,2,4-triazol-1-yl)-2-pyrrolidin-1-yl-1,3,2-diazaphospholidinium hexafluorophosphate (MNTP): a powerful condensing reagent for phosphate and phosphonate esters. Tetrahedron 62:3667–3673. doi:10.1016/j.tet.2006.01.084

    Article  CAS  Google Scholar 

  22. Prakash G, Zibinsky M, Upton TG et al (2010) Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene) triphosphoric acid. Proc Natl Acad Sci USA 107:15693–15698. doi:10.1073/pnas.1007430107

    Article  Google Scholar 

  23. Chunikhin KS, Kadyrov AA, Pasternak PV, Chkanikov ND (2010) Difluoromethylenephosphonates: synthesis and transformations. Russ Chem Rev 79:371–396. doi:10.1070/RC2010v079n05ABEH003883

    Article  CAS  Google Scholar 

  24. Ivanova MV, Bayle A, Besset T et al (2016) New prospects toward the synthesis of difluoromethylated phosphate mimics. Chem Eur J 22:10284–10293. doi:10.1002/chem.201601310

    Article  CAS  Google Scholar 

  25. Batra VK, Pedersen LC, Beard WA et al (2010) Halogenated β, γ-methylene- and ethylidene-dGTP-DNA ternary complexes with DNA polymerase β: structural evidence for stereospecific binding of the fluoromethylene analogues. J Am Chem Soc 132:7617–7625. doi:10.1021/ja909370k

    Article  CAS  Google Scholar 

  26. Evans DA, Britton TC, Ellman JA, Dorow RL (1990) The asymmetric synthesis of α-aminoacids. Electrophilic azidation of chiral imide enolates, a practical approach to the synthesis of (R)- and (S)-a-azido carboxylic acids. J Am Chem Soc 112:4011–4030

    Article  CAS  Google Scholar 

  27. Benati L, Nanni D, Spagnolo P (1999) Reactions of benzocyclic β-keto esters with sulfonyl azides. 2. further insight into the influence of azide structure and solvent on the reaction course. J Org Chem 64:5132–5138. doi:10.1021/jo9901541

    Article  CAS  Google Scholar 

  28. Wurz RP, Lin W, Charette AB (2003) Trifluoromethanesulfonyl azide: an efficient reagent for the preparation of α-cyano-α-diazo carbonyls and an α-sulfonyl-α-diazo carbonyl. Tetrahedron Lett 44:8845–8848. doi:10.1016/j.tetlet.2003.09.197

    Article  CAS  Google Scholar 

  29. Chamberlain BT, Upton TG, Kashemirov BA, McKenna CE (2011) α-Azido bisphosphonates: synthesis and nucleotide analogues. J Org Chem 76:5132–5136. doi:10.1021/jo200045a

    Article  CAS  Google Scholar 

  30. Upton TG, Kashemirov BA, McKenna CE et al (2009) α, β-Difluoromethylene deoxynucleoside 5′-triphosphates: a convenient synthesis of useful probes for DNA polymerase β structure and function. Org Lett 11:1883–1886. doi:10.1021/ol701755k

    Article  CAS  Google Scholar 

  31. Wu Y, Zakharova VM, Kashemirov BA et al (2012) β, γ-CHF- and β, γ-CHCl-dGTP diastereomers: synthesis, discrete 31P NMR Signatures, and absolute configurations of new stereochemical probes for DNA polymerases. J Am Chem Soc 134:8734–8737. doi:10.1021/ja300218x

    Article  CAS  Google Scholar 

  32. Kim SM, Kim HR, Kim DY (2005) Catalytic enantioselective fluorination and amination of β-keto phosphonates catalyzed by chiral palladium complexes. Org Lett 7:2309–2311. doi:10.1021/ol050413a

    Article  CAS  Google Scholar 

  33. Hamashima Y, Suzuki T, Shimura Y et al (2005) An efficient catalytic enantioselective fluorination of β-ketophosphonates using chiral palladium complexes. Tetrahedron Lett 46:1447–1450. doi:10.1016/j.tetlet.2005.01.018

    Article  CAS  Google Scholar 

  34. Kang Y, Cho M, Kim S, Kim D (2007) Asymmetric electrophilic fluorination of α-cyanoalkylphosphonates-catalyzed by chiral palladium complexes. Synlett 2007:1135–1138. doi:10.1055/s-2007-977436

    Article  CAS  Google Scholar 

  35. Moriya K-I, Hamashima Y, Sodeoka M (2007) Pd(II)-catalyzed asymmetric fluorination of α-Aryl-α-cyanophosphonates with the aid of 2,6-lutidine. Synlett 2007:1139–1142. doi:10.1055/s-2007-977437

    Article  CAS  Google Scholar 

  36. Oliveira FM, Barbosa LCA, Ismail FMD (2014) The diverse pharmacology and medicinal chemistry of phosphoramidates—a review. RSC Adv 4:18998–19012. doi:10.1039/c4ra01454e

    Article  CAS  Google Scholar 

  37. Paul S, Caruthers MH (2016) Synthesis of phosphorodiamidate morpholino oligonucleotides and their chimeras using phosphoramidite chemistry. J Am Chem Soc 138:15663–15672. doi:10.1021/jacs.6b08854

    Article  CAS  Google Scholar 

  38. Guga P, Koziołkiewicz M (2011) Phosphorothioate nucleotides and oligonucleotides—recent progress in synthesis and application. Chem Biodivers 8:1642–1681. doi:10.1002/cbdv.201100130

    Article  CAS  Google Scholar 

  39. Hofer A, Cremosnik GS, Müller AC et al (2015) A modular synthesis of modified phosphoanhydrides. Chem Eur J 21:10116–10122. doi:10.1002/chem.201500838

    Article  CAS  Google Scholar 

  40. Cremosnik GS, Hofer A, Jessen HJ (2013) Iterative synthesis of nucleoside oligophosphates with phosphoramidites. Angew Chem Int Ed 53:286–289. doi:10.1002/anie.201306265

    Article  CAS  Google Scholar 

  41. Hofer A, Marques E, Kieliger N et al (2016) Chemoselective dimerization of phosphates. Org Lett 18:3222–3225. doi:10.1021/acs.orglett.6b01466

    Article  CAS  Google Scholar 

  42. Nadel Y, Lecka J, Gilad Y et al (2014) Highly potent and selective ectonucleotide pyrophosphatase/phosphodiesterase i inhibitors based on an adenosine 5′-(α or γ)-thio-(α, β- or β, γ)-methylenetriphosphate scaffold. J Med Chem 57:4677–4691. doi:10.1021/jm500196c

    Article  CAS  Google Scholar 

  43. Thillier Y, Sallamand C, Baraguey C et al (2014) Solid-phase synthesis of oligonucleotide 5′-(α-P-Thio)triphosphates and 5′-(α-P-thio)(β, γ-methylene)triphosphates. Eur J Org Chem 2015:302–308. doi:10.1002/ejoc.201403381

    Article  CAS  Google Scholar 

  44. Iyer RP, Egan W, Regan JB, Beaucage SL (1990) 3H-1, 2-Benzodithiole-3-one 1, 1-dioxide as an improved sulfurizing reagent in the solid-phase synthesis of oligodeoxyribonucleoside phosphorothioates. J Am Chem Soc 112:1254–1255

    Article  Google Scholar 

  45. Stec WJ, Grajkowski A, Koziolkiewicz M, Uznanski B (1991) Novel route to oligo(deoxyribonucleoside phosphorothioates). Stereocontrolled synthesis of P-chiral oligo(deoxyribonucleoside phosphorothioates). Nucl Acids Res 19:5883–5888

    Article  CAS  Google Scholar 

  46. Oka N, Wada T, Saigo K (2003) An oxazaphospholidine approach for the stereocontrolled synthesis of oligonucleoside phosphorothioates. J Am Chem Soc 125:8307–8317. doi:10.1021/ja034502z

    Article  CAS  Google Scholar 

  47. Nukaga Y, Yamada K, Ogata T et al (2012) Stereocontrolled solid-phase synthesis of phosphorothioate oligoribonucleotides using 2′-O-(2-cyanoethoxymethyl)-nucleoside 3′-O-oxazaphospholidine monomers. J Org Chem 77:7913–7922. doi:10.1021/jo301052v

    Article  CAS  Google Scholar 

  48. Jahns H, Roos M, Imig J et al (2015) Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nat Commun 6:1–9. doi:10.1038/ncomms7317

    Article  CAS  Google Scholar 

  49. Krakowiak A, Pęcherzewska R, Kaczmarek R et al (2011) Bioorganic & medicinal chemistry. Bioorg Med Chem 19:5053–5060. doi:10.1016/j.bmc.2011.06.028

    Article  CAS  Google Scholar 

  50. Kaczmarek R, Krakowiak A, Korczyński D et al (2016) Bioorganic & medicinal chemistry. Bioorg Med Chem 24:5068–5075. doi:10.1016/j.bmc.2016.08.027

    Article  CAS  Google Scholar 

  51. Yang X, Mierzejewski E (2010) Synthesis of nucleoside and oligonucleoside dithiophosphates. New J Chem 34:805. doi:10.1039/b9nj00618d

    Article  CAS  Google Scholar 

  52. Li N-S, Frederiksen JK, Piccirilli JA (2012) Automated solid-phase synthesis of RNA oligonucleotides containing a nonbridging phosphorodithioate linkage via phosphorothioamidites. J Org Chem 77:9889–9892. doi:10.1021/jo301834p

    Article  CAS  Google Scholar 

  53. Yang X, Sierant M, Janicka M et al (2012) Gene silencing activity of siRNA molecules containing phosphorodithioate substitutions. ACS Chem Biol 7:1214–1220. doi:10.1021/cb300078e

    Article  CAS  Google Scholar 

  54. Li N-S, Frederiksen JK, Piccirilli JA (2011) Synthesis, properties, and applications of oligonucleotides containing an RNA dinucleotide phosphorothiolate linkage. Acc Chem Res 44:1257–1269. doi:10.1021/ar200131t

    Article  CAS  Google Scholar 

  55. Eguaogie O, Cooke LA, Martin PML et al (2016) Synthesis of novel pyrophosphorothiolate-linked dinucleoside cap analogues in a ball mill. Org Biomol Chem 14:1201–1205. doi:10.1039/c5ob02061a

    Article  CAS  Google Scholar 

  56. Meltzer D, Nadel Y, Lecka J et al (2013) Nucleoside-(5′ → P) methylenebisphosphonodithioate analogues: synthesis and chemical properties. J Org Chem 78:8320–8329. doi:10.1021/jo400931n

    Article  CAS  Google Scholar 

  57. Amir A, Sayer AH, Zagalsky R et al (2013) O, O′-Diester methylenediphosphonotetrathioate: synthesis, characterization, and potential applications. J Org Chem 78:270–277. doi:10.1021/jo301786m

    Article  CAS  Google Scholar 

  58. Gryaznov SM (2010) Oligonucleotide N3′ → P5′ phosphoramidates and thio-phoshoramidates as potential therapeutic agents. Chem Biodivers 7:477–493. doi:10.1002/cbdv.200900187

    Article  CAS  Google Scholar 

  59. Pongracz K, Gryaznov S (1999) Oligonucleotide N3′ → P5′ thiophosphoramidates: synthesis and properties. Tetrahedron Lett 40:7661–7664

    Article  CAS  Google Scholar 

  60. Herbert B-S, Pongracz K, Shay JW et al (2002) Oligonucleotide N3′ → P5′ phosphoramidates as efficient telomerase inhibitors. Oncogene 21:638–642. doi:10.1038/sj.onc.1205064

    Article  Google Scholar 

  61. Wagner GK, Pesnot T, Field RA (2009) A survey of chemical methods for sugar-nucleotide synthesis. Nat Prod Rep 26:1172–1194. doi:10.1039/b909621n

    Article  CAS  Google Scholar 

  62. Trmčić M, Hodgson DRW (2011) Synthesis of thiophosphoramidates in water: click chemistry for phosphates. Chem Commun 47:6156–6158. doi:10.1039/c1cc11586c

    Article  CAS  Google Scholar 

  63. Jessen HJ, Ahmed N, Hofer A (2014) Phosphate esters and anhydrides—recent strategies targeting nature’s favoured modifications. Org Biomol Chem 12:3526–3530. doi:10.1039/c4ob00478g

    Article  CAS  Google Scholar 

  64. Trmčić M, Chadbourne FL, Brear PM et al (2013) Aqueous synthesis of N, S-dialkylthiophosphoramidates: design, optimisation and application to library construction and antileishmanial testing. Org Biomol Chem 11:2660. doi:10.1039/c3ob27448a

    Article  CAS  Google Scholar 

  65. Conway LP, Delley RJ, Neville J et al (2014) The aqueous N-phosphorylation and N-thiophosphorylation of aminonucleosides. RSC Adv 4:38663–38671. doi:10.1039/C4RA08317B

    Article  CAS  Google Scholar 

  66. Conway LP, Mikkola S, O’Donoghue AC, Hodgson DRW (2016) The synthesis, conformation and hydrolytic stability of an N, S-bridging thiophosphoramidate analogue of thymidylyl-3′,5′-thymidine. Org Biomol Chem 14:7361–7367. doi:10.1039/C6OB01270A

    Article  CAS  Google Scholar 

  67. Korlach J, Bibillo A, Wegener J et al (2008) Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides Nucleotides Nucl Acids 27:1072–1082. doi:10.1080/15257770802260741

    Article  CAS  Google Scholar 

  68. Kumar S, Sood A, Wegener J et al (2005) Terminal phosphate labeled nucleotides: synthesis, applications, and linker effect on incorporation by dna polymerases. Nucleosides Nucleotides Nucl Acids 24:401–408. doi:10.1081/NCN-200059823

    Article  CAS  Google Scholar 

  69. Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Meth 2:17–25. doi:10.1038/nmeth731

    Article  CAS  Google Scholar 

  70. Satake W, Nakabayashi Y, Mizuta I et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307. doi:10.1038/ng.485

    Article  CAS  Google Scholar 

  71. Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315. doi:10.1038/nrd773

    Article  CAS  Google Scholar 

  72. Manning G, Whyte DB, Martinez R, Hunter T (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  Google Scholar 

  73. Statsuk AV, Maly DJ, Seeliger MA et al (2008) Tuning a three-component reaction for trapping kinase substrate complexes. J Am Chem Soc 130:17568–17574. doi:10.1021/ja807066f

    Article  CAS  Google Scholar 

  74. Blethrow JD, Glavy JS, Morgan DO, Shokat KM (2008) Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci USA 105:1442–1447. doi:10.1073/pnas.0708966105

    Article  CAS  Google Scholar 

  75. Suwal S, Pflum MKH (2010) Phosphorylation-dependent kinase-substrate cross-linking. Angew Chem Int Ed 49:1627–1630. doi:10.1002/anie.200905244

    Article  CAS  Google Scholar 

  76. Hacker SM, Mex M, Marx A (2012) Synthesis and stability of phosphate modified ATP analogues. J Org Chem 77:10450–10454. doi:10.1021/jo301923p

    Article  CAS  Google Scholar 

  77. Lee SE, Elphick LM, Anderson AA et al (2009) Bioorganic & medicinal chemistry letters. Bioorg Med Chem Lett 19:3804–3807. doi:10.1016/j.bmcl.2009.04.028

    Article  CAS  Google Scholar 

  78. Ratnakar SJ, Alexander V (2005) Synthesis and relaxivity studies of a gadolinium(III) complex of ATP-conjugated DO3A as a contrast enhancing agent for MRI. Eur J Inorg Chem 2005:3918–3927. doi:10.1002/ejic.200401018

    Article  CAS  Google Scholar 

  79. Martić S, Labib M, Freeman D, Kraatz H-B (2011) Probing the role of the linker in ferrocene-ATP conjugates: monitoring protein kinase catalyzed phosphorylations electrochemically. Chem Eur J 17:6744–6752. doi:10.1002/chem.201003535

    Article  CAS  Google Scholar 

  80. Song H, Kerman K, Kraatz H-B (2008) Electrochemical detection of kinase-catalyzed phosphorylation using ferrocene-conjugated ATP. Chem Commun. doi:10.1039/B714383D

    Google Scholar 

  81. Green KD, Pflum MKH (2007) Kinase-catalyzed biotinylation for phosphoprotein detection. J Am Chem Soc 129:10–11. doi:10.1021/ja066828o

    Article  CAS  Google Scholar 

  82. Parang K, Kohn JA, Saldanha SA, Cole PA (2002) Development of photo-crosslinking reagents for protein kinase–substrate interactions. FEBS Lett 520:156–160

    Article  CAS  Google Scholar 

  83. Korhonen HJ, Conway LP, Hodgson DR (2014) ScienceDirectPhosphate analogues in the dissection of mechanism. Curr Opin Chem Biol 21:63–72. doi:10.1016/j.cbpa.2014.05.001

    Article  CAS  Google Scholar 

  84. Gao X, Schutz-Geschwender A, Hardwidge PR (2008) Near-infrared fluorescence detection of ATP-biotin-mediated phosphoprotein labeling. Biotechnol Lett 31:113–117. doi:10.1007/s10529-008-9824-0

    Article  CAS  Google Scholar 

  85. Senevirathne C, Pflum MKH (2013) Biotinylated phosphoproteins from kinase-catalyzed biotinylation are stable to phosphatases: implications for phosphoproteomics. ChemBioChem 14:381–387. doi:10.1002/cbic.201200626

    Article  CAS  Google Scholar 

  86. Dunn JD, Reid GE, Bruening ML (2009) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29:29–54. doi:10.1002/mas.20219

    Google Scholar 

  87. Fouda AE, Pflum MKH (2015) A cell-permeable ATP analogue for kinase-catalyzed biotinylation. Angew Chem 127:9754–9757. doi:10.1002/ange.201503041

    Article  Google Scholar 

  88. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi:10.1126/science.1162986

    Article  CAS  Google Scholar 

  89. Fuller CW, Kumar S, Porel M et al (2016) Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proc Natl Acad Sci USA 113:5233–5238. doi:10.1073/pnas.1601782113

    Article  CAS  Google Scholar 

  90. Hornung V, Ellegast J, Kim S et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997. doi:10.1126/science.1132505

    Article  Google Scholar 

  91. Schlee M (2013) Master sensors of pathogenic RNA – RIG-I like receptors. Immunobiology 218:1322–1335. doi:10.1016/j.imbio.2013.06.007

    Article  CAS  Google Scholar 

  92. Martinez-Gil L, Goff PH, Hai R et al (2013) A Sendai virus-derived RNA agonist of RIG-I as a virus vaccine adjuvant. J Virol 87:1290–1300. doi:10.1128/JVI.02338-12

    Article  CAS  Google Scholar 

  93. Kolakofsky D, Kowalinski E, Cusack S (2012) A structure-based model of RIG-I activation. RNA 18:2118–2127. doi:10.1261/rna.035949.112

    Article  CAS  Google Scholar 

  94. Poeck H, Besch R, Maihoefer C et al (2008) 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat Med 14:1256–1263. doi:10.1038/nm.1887

    Article  CAS  Google Scholar 

  95. Burgess K, Cook D (2000) Syntheses of nucleoside triphosphates. Chem Rev 100:2047–2060. doi:10.1021/cr990045m

    Article  CAS  Google Scholar 

  96. Roy B, Depaix A, Périgaud C, Peyrottes S (2016) Recent trends in nucleotide synthesis. Chem Rev 116:7854–7897. doi:10.1021/acs.chemrev.6b00174

    Article  CAS  Google Scholar 

  97. Sun Q, Edathil JP, Wu R et al (2008) One-pot synthesis of nucleoside 5′-triphosphates from nucleoside 5′- H-phosphonates. Org Lett 10:1703–1706. doi:10.1021/ol8003029

    Article  CAS  Google Scholar 

  98. Sproat BS, Rupp T, Menhardt N, Keane D (1999) Fast and simple purification of chemically modified hammerhead ribozymes using a lipophilic capture tag. Nucl Acids Res 27:1950–1955

    Article  CAS  Google Scholar 

  99. Goldeck M, Tuschl T, Hartmann G, Ludwig J (2014) Efficient solid-phase synthesis of pppRNA by using product-specific labeling. Angew Chem Int Ed 53:4694–4698. doi:10.1002/anie.201400672

    Article  CAS  Google Scholar 

  100. Sarac I, Meier C (2015) Efficient automated solid-phase synthesis of DNA and RNA 5′-triphosphates. Chem Eur J 21:16421–16426. doi:10.1002/chem.201502844

    Article  CAS  Google Scholar 

  101. Merino P, Weinschenk L, Meier C (2013) Chemical syntheses of nucleoside triphosphates. In: Merino P (ed) Chemical synthesis of nucleoside analogues. Wiley, Hoboken. doi: 10.1002/9781118498088.ch5

  102. Fardet L, Fève B (2014) Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs 74:1731–1745. doi:10.1007/s40265-014-0282-9

    Article  CAS  Google Scholar 

  103. Kern JC, Cancilla M, Dooney D et al (2016) Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J Am Chem Soc 138:1430–1445. doi:10.1021/jacs.5b12547

    Article  CAS  Google Scholar 

  104. Wu M, Chong LS, Perlman DH et al (2016) Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci USA 113:E6757–E6765. doi:10.1073/pnas.1606853113

    Article  CAS  Google Scholar 

  105. Wu M, Dul BE, Trevisan AJ, Fiedler D (2013) Synthesis and characterization of non-hydrolysable diphosphoinositol polyphosphate messengers. Chem Sci 4:405–410. doi:10.1039/C2SC21553E

    Article  CAS  Google Scholar 

  106. Li P, Sergueeva ZA, Dobrikov M, Shaw BR (2007) Nucleoside and oligonucleoside boranophosphates: chemistry and properties. Chem Rev 107:4746–4796. doi:10.1021/cr050009p

    Article  CAS  Google Scholar 

  107. Alayrac C, Lakhdar S, Abdellah I et al (2015) Recent advances in synthesis of P-BH3 compounds. Top Curr Chem 361:1–82. doi:10.1007/128_2014_565

    Article  CAS  Google Scholar 

  108. Cheek MA, Sharaf ML, Dobrikov MI, Shaw BR (2013) Inhibition of hepatitis C viral RNA-dependent RNA polymerase by alpha-P-boranophosphate nucleotides: exploring a potential strategy for mechanism-based HCV drug design. Antiviral Res 98:144–152. doi:10.1016/j.antiviral.2013.02.014

    Article  CAS  Google Scholar 

  109. Li P, Xu Z, Liu H et al (2005) Synthesis of α-P-modified nucleoside diphosphates with ethylenediamine. J Am Chem Soc 127:16782–16783. doi:10.1021/ja055179y

    Article  CAS  Google Scholar 

  110. Ginsburg-Shmuel T, Haas M, Grbic D et al (2012) UDP made a highly promising stable, potent, and selective P2Y6-receptor agonist upon introduction of a boranophosphate moiety. Bioorg Med Chem 20:5483–5495. doi:10.1016/j.bmc.2012.07.042

    Article  CAS  Google Scholar 

  111. Yelovitch S, Camden J, Weisman GA, Fischer B (2012) Boranophosphate isoster controls P2Y-receptor subtype selectivity and metabolic stability of dinucleoside polyphosphate analogues. J Med Chem 55:437–448. doi:10.1021/jm2013198

    Article  CAS  Google Scholar 

  112. Xu Z, Ramsay B (2015) Synthesis, hydrolysis, and protonation-promoted intramolecular reductive breakdown of potential NRTIs: stavudine α-P-borano-γ-P-N-l-tryptophanyltriphosphates. Molecules 20:18808–18826. doi:10.3390/molecules201018808

    Article  CAS  Google Scholar 

  113. Azran S, Förster D, Danino O et al (2013) Highly efficient biocompatible neuroprotectants with dual activity as antioxidants and P2Y receptor agonists. J Med Chem 56:4938–4952. doi:10.1021/jm400197m

    Article  CAS  Google Scholar 

  114. Fujita S, Oka N, Matsumura F, Wada T (2011) Synthesis of oligo(α-d-glycosyl phosphate) derivatives by a phosphoramidite method via boranophosphate intermediates. J Org Chem 76:2648–2659. doi:10.1021/jo102584g

    Article  CAS  Google Scholar 

  115. Ferry A, Guinchard X, Retailleau P, Crich D (2012) Synthesis, characterization, and coupling reactions of six-membered cyclic P-chiral ammonium phosphonite-boranes; reactive H-phosphinate equivalents for the stereoselective synthesis of glycomimetics. J Am Chem Soc 134:12289–12301. doi:10.1021/ja305104b

    Article  CAS  Google Scholar 

  116. Xu Z, Sergueeva ZA, Shaw BR (2013) Synthesis and hydrolytic properties of thymidine boranomonophosphate. Tetrahedron Lett 54:2882–2885. doi:10.1016/j.tetlet.2013.03.110

    Article  CAS  Google Scholar 

  117. Nahum V, Fischer B (2004) Boranophosphate salts as an excellent mimic of phosphate salts: preparation, characterization, and properties. Eur J Inorg Chem 2004:4124–4131. doi:10.1002/ejic.200400142

    Article  CAS  Google Scholar 

  118. Kowalska J, Wypijewska del Nogal A, Darzynkiewicz ZM et al (2014) Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes. Nucl Acids Res 42:10245–10264. doi:10.1093/nar/gku757

    Article  CAS  Google Scholar 

  119. Belabassi Y, Antczak MI, Tellez J, Montchamp J-L (2008) Borane complexes of the H3PO2 P(III) tautomer: useful phosphinate equivalents. Tetrahedron 64:9181–9190. doi:10.1016/j.tet.2008.07.054

    Article  CAS  Google Scholar 

  120. Ferry A, Malik G, Retailleau P et al (2013) Alternative synthesis of P-chiral phosphonite-borane complexes: application to the synthesis of phostone–phostone dimers. J Org Chem 78:6858–6867. doi:10.1021/jo400864s

    Article  CAS  Google Scholar 

  121. Higashida R, Oka N, Kawanaka T, Wada T (2009) Nucleoside H-boranophosphonates: a new class of boron-containing nucleotide analogues. Chem Commun. doi:10.1039/b901045a

    Google Scholar 

  122. Oka N, Takayama Y, Ando K, Wada T (2012) Synthesis of nucleoside 50-boranophosphorothioate derivatives using an H-boranophosphonate monoester as a precursor. Bioorg Med Chem Lett 22:4571–4574. doi:10.1016/j.bmcl.2012.05.093

    Article  CAS  Google Scholar 

  123. Baranowski MR, Nowicka A, Rydzik AM et al (2015) Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for 19F NMR studies. J Org Chem 80:3982–3997. doi:10.1021/acs.joc.5b00337

    Article  CAS  Google Scholar 

  124. Bollmark M, Stawinski J (1998) Nucleotide analogues containing the P–F bond. An overview of the synthetic methods. Nucleosides Nucleotides Nucl Acids 17:663–680. doi:10.1080/07328319808005208

    Article  CAS  Google Scholar 

  125. Dąbkowski W, Tworowska I, Michalski J, Cramer F (2000) New efficient synthesis of thymidine cyclic 3′, 5′-phosphorofluoridate and its sulfur analogue via the phosphoroamidite route. Nucleosides Nucleotides Nucl Acids 19:1779–1785. doi:10.1016/0040-4039(94)02403-X

    Article  Google Scholar 

  126. Misiura K, Szymanowicz D, Kuśnierczyk H (2001) Synthesis, chemical and enzymatic reactivity, and toxicity of dithymidylyl-3′,5′-phosphorofluoridate and -phosphorothiofluoridate. Bioorg Med Chem 9:1525–1532

    Article  CAS  Google Scholar 

  127. Dąbkowski W, Tworowska I (2001) Novel phosphitylating reagents containing a phosphorus–fluorine bond and their application in efficient synthesis of phosphorofluoridates and phosphorofluoridothionates. J Chem Soc Perkin Trans 1:2462–2469. doi:10.1039/b103082p

    Article  CAS  Google Scholar 

  128. Murai T, Tonomura Y, Takenaka T (2011) Phosphorofluoridic acid ammonium salts and acids: synthesis, NMR properties, and application as acid catalysts. Heteroatom Chem 22:417–425. doi:10.1002/hc.20700

    Article  CAS  Google Scholar 

  129. Wächter M, Rüedi P (2012) Synthesis and characterization of enantiomerically pure cis- and trans-3-fluoro-2,4-dioxa-7-aza-3-phosphadecalin 3-oxides as acetylcholine mimetics and inhibitors of acetylcholinesterase. Helv Chim Acta 95:716–736

    Article  CAS  Google Scholar 

  130. Rovnaník P, Žák Z, Černík M (2006) Syntheses of phosphoryl chloro- and bromofluorides and crystal structures of POFCl2 and POF2Cl. Z Anorg Allg Chem 632:1356–1362. doi:10.1002/zaac.200500510

    Article  CAS  Google Scholar 

  131. Aldersley MF, Joshi PC, Schwartz HM, Kirby AJ (2014) The reaction of activated RNA species with aqueous fluoride ion: a convenient synthesis of nucleotide 5′-phosphorofluoridates and a note on the mechanism. Tetrahedron Lett 55:1464–1466. doi:10.1016/j.tetlet.2014.01.051

    Article  CAS  Google Scholar 

  132. Aldersley MF, Joshi PC, Ott EL et al (2015) The introduction of P–F bonds using aqueous fluoride ion and a water soluble carbodiimide: a convenient alternative synthesis of phosphorofluoridates and phosphonofluoridates. Tetrahedron Lett 56:5272–5274. doi:10.1016/j.tetlet.2015.07.036

    Article  CAS  Google Scholar 

  133. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414. doi:10.1146/annurev.biochem.75.101304.124125

    Article  CAS  Google Scholar 

  134. Singh RP, Jean’ne MS (2002) Recent advances in nucleophilic fluorination reactions of organic compounds using deoxofluor and DAST. Synthesis 17:2561–2578

    Google Scholar 

  135. Saltmarsh JR, Boyd AE, Rodriguez OP et al (2000) Synthesis of fluorescent probes directed to the active site gorge of acetylcholinesterase. Bioorg Med Chem Lett 10:1523–1526

    Article  CAS  Google Scholar 

  136. Guo L, Suarez AI, Braden MR et al (2010) Inhibition of acetylcholinesterase by chromophore-linked fluorophosphonates. Bioorg Med Chem Lett 20:1194–1197. doi:10.1016/j.bmcl.2009.12.007

    Article  CAS  Google Scholar 

  137. Pallan PS, Egli M (2007) Selenium modification of nucleic acids: preparation of oligonucleotides with incorporated 2′-SeMe-uridine for crystallographic phasing of nucleic acid structures. Nat Protoc 2:647–651. doi:10.1038/nprot.2007.75

    Article  CAS  Google Scholar 

  138. Salon J, Sheng J, Jiang J et al (2007) Oxygen replacement with selenium at the thymidine 4-position for the Se base pairing and crystal structure studies. J Am Chem Soc 129:4862–4863. doi:10.1021/ja0680919

    Article  CAS  Google Scholar 

  139. Sheng J, Huang Z (2010) Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies. Chem Biodivers 7:753–785. doi:10.1002/cbdv.200900200

    Article  CAS  Google Scholar 

  140. Han Q, Sarafianos SG, Arnold E et al (2009) Synthesis of boranoate, selenoate, and thioate analogs of AZTp4A and Ap4A. Tetrahedron 65:7915–7920. doi:10.1016/j.tet.2009.07.079

    Article  CAS  Google Scholar 

  141. Lin L, Caton-Williams J, Kaur M et al (2011) Facile synthesis of nucleoside 5′-(alpha-P-seleno)-triphosphates and phosphoroselenoate RNA transcription. RNA 17:1932–1938. doi:10.1261/rna.2719311

    Article  CAS  Google Scholar 

  142. Qi N, Jung K, Wang M et al (2011) A novel membrane-permeant cADPR antagonist modified in the pyrophosphate bridge. Chem Commun 47:9462–9464. doi:10.1039/c1cc13062e

    Article  CAS  Google Scholar 

  143. Strenkowska M, Wanat P, Ziemniak M et al (2012) Preparation of synthetically challenging nucleotides using cyanoethyl P-imidazolides and microwaves. Org Lett 14:4782–4785. doi:10.1021/ol302071f

    Article  CAS  Google Scholar 

  144. Kowalska J, Lukaszewicz M, Zuberek J et al (2009) Phosphoroselenoate dinucleotides for modification of mRNA 5′ end. ChemBioChem 10:2469–2473. doi:10.1002/cbic.200900522

    Article  CAS  Google Scholar 

  145. Müller AC, Giambruno R, Weißer J, Májek P (2016) Identifying kinase substrates via a heavy ATP kinase assay and quantitative mass spectrometry. Sci Rep 6:1–10

    Article  Google Scholar 

  146. Li Y, Cross FR, Chait BT (2014) Method for identifying phosphorylated substrates of specific cyclin/cyclin-dependent kinase complexes. Proc Natl Acad Sci USA 111:11323–11328. doi:10.1073/pnas.1409666111

    Article  CAS  Google Scholar 

  147. Xue L, Wang P, Cao P et al (2014) Identification of extracellular signal-regulated kinase 1 (ERK1) direct substrates using stable isotope labeled kinase assay-linked phosphoproteomics. Mol Cell Proteomics 13:3199–3210. doi:10.1074/mcp.O114.038588

    Article  CAS  Google Scholar 

  148. Scian M, Acchione M, Li M, Atkins WM (2014) Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein. Biochemistry 53:991–1000. doi:10.1021/bi401280v

    Article  CAS  Google Scholar 

  149. Melby ES, Soldat DJ, Barak P (2011) Synthesis and detection of oxygen-18 labeled phosphate. PLoS ONE 6:e18420. doi:10.1371/journal.pone.0018420.t001

    Article  CAS  Google Scholar 

  150. Kübler D, Schäfer M, Lehmann W-D, Seidel J (2011) Manufacture and usage of (γ-18O3)ATP or [γ-18O3]GTP. WO 2011/064289 A1, 1–23

  151. Fu C, Zheng X, Jiang Y et al (2013) A universal and multiplex kinase assay using γ-[18O4]-ATP. Chem Commun 49:2795–2797. doi:10.1039/c3cc38467e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Grant No. SNF, PP00P2_157607) and HFSP Organization (Grant No. RGP0025/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Jacob Jessen.

Additional information

This article is part of the Topical Collection “Phosphate Labeling and Sensing in Chemical Biology”; edited by Henning Jessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A.K., Captain, I. & Jessen, H.J. New Synthetic Methods for Phosphate Labeling. Top Curr Chem (Z) 375, 51 (2017). https://doi.org/10.1007/s41061-017-0135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0135-6

Keywords

Navigation