Skip to main content
Log in

Fundamental Changes in Theory of Duncan’s Model for Economic Design of Control Charts in the Presence of Multiple Assignable Causes

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

One of the most widely used tools for quality engineers in quickly detecting assignable causes and monitoring processes is control charts. Duncan (in J Am Stat Assoc 51(274):228–242, 1956), in order to improve product quality and reduce the economic costs of the quality cycle, presented the first economic design of the \( \bar{X} \) control chart in the presence of multiple assignable causes. In his model and all the economic designs derived from it, it is assumed that after the occurrence of an assignable cause, no other assignable cause occurs until the correct alarm is issued. This assumption is unrealistic and impractical in production and service processes. Therefore, in this paper, we present a realistic and practical economic design in the presence of multiple assignable causes for the \(\bar{X}\) control chart under the Weibull shock model in industry. The numerical results of our model show well that in the previous models, the average cost per unit time of the quality cycle is severely underestimated compared to the actual value. Therefore, it is suggested that in order to eliminate the shortcomings of the previous economic design in the presence of multiple assignable causes, in future research, they should be redesigned based on our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Baker KR (1971) Two process models in the economic design of an \(\bar{X}\) chart. AIIE Trans 3(4):257–263

    Article  Google Scholar 

  • Banerjee PK, Rahim MA (1988) Economic design of \(\bar{X}\) control charts under Weibull shock models. Technometrics 30(4):407–414

    MathSciNet  MATH  Google Scholar 

  • Chen YS, Yang YM (2002) Economic design of \(\bar{X}\)-control charts with Weibull in-control times when there are multiple assignable causes. Int J Prod Econ 77(1):17–23

    Article  MathSciNet  Google Scholar 

  • Chung KJ (1990) A simplified procedure for the economic design of X-charts. Int J Prod Res 28(7):1239–1246

    Article  Google Scholar 

  • Costa A, Fichera S (2021) Economic-statistical design of adaptive arma control chart for autocorrelated data. J Stat Comput Simul 91(3):623–647

    Article  MathSciNet  MATH  Google Scholar 

  • Duncan AJ (1956) The economic design of \(\bar{X}\) charts used to maintain current control of a process. J Am Stat Assoc 51(274):228–242

    MATH  Google Scholar 

  • Duncan AJ (1971) The economic design of \(\bar{X}\)-charts when there is a multiplicity of assignable causes. J Am Stat Assoc 66(333):107–121

    MATH  Google Scholar 

  • Heikes RG, Montgomery DC, Yeung JY (1974) Alternative process models in the economic design of T2 control charts. AIIE Trans 6(1):55–61

    Article  Google Scholar 

  • Heydari AA, Moghadam MB, Eskandari F (2016) Economic and economic statistical designs of \(\bar{X}\)-control charts under Burr XII shock model. Int J Qual Eng Technol 6(1–2):1–19

    Article  Google Scholar 

  • Heydari AA, Moghadam MB, Eskandari F (2017) An extension of Banerjee and Rahim model in economic and economic statistical designs for multivariate quality characteristics under Burr XII distribution. Commun Stat-Theory Methods 46(16):7855–7871

    Article  MathSciNet  MATH  Google Scholar 

  • Ho C, Case KE (1994) Economic design of control charts: a literature review for 1981–1991. J Qual Technol 26(1):39–53

    Article  Google Scholar 

  • Jolayemi JK, Berrettoni JN (1989) Multivariate control charts: An optimization approach to the effective use and measurement of performance. Appl Math Comput 32(1):1–15

    MATH  Google Scholar 

  • Lee PH (2021) Economic design of a CEV \(\bar{X}\) control chart for determining optimal right-censored times. Qual Technol Quant Manag 18(4):418–431

    Article  Google Scholar 

  • McWilliams TP (1989) Economic control chart designs and the in-control time distribution: a sensitivity study. J Qual Technol 21(2):103–110

    Article  Google Scholar 

  • Moghadam MB, Khadem Y, Fani S, Pasha MA (2017) Effects of non-normality on economic and economic statistical designs of-control charts with multiple assignable causes and Weibull in-control times. Commun Stat-Simul Comput 47(7):2055–2069

    Article  MathSciNet  MATH  Google Scholar 

  • Montgomery DC (1980) The economic design of control charts: a review and literature survey. J Qual Technol 12(2):75–87

    Article  Google Scholar 

  • Montgomery DC, Heikes RG (1976) Process failure mechanisms and optimal design of fraction defective control charts. AIIE Trans 8(4):467–472

    Article  Google Scholar 

  • Naderi MH, Moghadam MB, Seif A (2018) Economic statistical design of the T2 control chart under the Weibull shock model with multiple assignable causes. J Stat Comput Simul 88(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Naderi MH, Seif A, Moghadam MB (2019) Constrained optimal design of \(\bar{X}\) control chart for correlated data under Weibull Shock Model with multiple assignable causes. Commun Stat-Theory Methods. https://doi.org/10.1080/03610926.2019.1664587

    Article  MATH  Google Scholar 

  • Nenes G, Tasias KA, Celano G (2015) A general model for the economic-statistical design of adaptive control charts for processes subject to multiple assignable causes. Int J Prod Res 53(7):2146–2164

    Article  Google Scholar 

  • Pasha MA, Moghadam MB, Fani S (2017) A generalized approach to economic design of control charts: a discussion on implementing. Commun Stat-Theory Methods 46(21):10495–10506

    Article  MathSciNet  MATH  Google Scholar 

  • Pasha MA, Bameni Moghadam M, Nematollahi N, Fani S (2018) A generalized model for multiplicity-cause economic and economic statistical design of \(\bar{X}\)-control charts with proportional hazards shock model. Commun Stat-Simul Comput 47(6):1866–1878

    Article  MathSciNet  MATH  Google Scholar 

  • Ross SM (1970) Applied probability models with optimization applications. Dover Publications, New York

    MATH  Google Scholar 

  • Saadatmelli A, Seif A, Moghadam MB, Faraz A (2018) Economic statistical design of a multivariate control chart under a Burr XII shock model with multiple assignable causes. J Stat Comput Simul 88(11):2111–2136

    Article  MathSciNet  MATH  Google Scholar 

  • Saadatmelli A, Moghadam MB, Seif A, Faraz A (2019) Economic design of \(\bar{X}\) control charts with multiple assignable causes under Burr XII shock model. Commun Stat-Theory Methods 48(3):500–522

    Article  MathSciNet  MATH  Google Scholar 

  • Safaei AS, Kazemzadeh RB, Gan HS (2015) Robust economic-statistical design of X-bar control chart. Int J Prod Res 53(14):4446–4458

    Article  Google Scholar 

  • Salmasnia A, Abdzadeh B, Rahimi A (2020) Joint optimization of double warning T2-Hotelling chart and maintenance policy with multiple assignable causes. J Stat Comput Simul 90(3):465–488

    Article  MathSciNet  MATH  Google Scholar 

  • Seif A, Faraz A, Saniga E (2015) Economic statistical design of the VP control charts for monitoring a process under non-normality. Int J Prod Res 53(14):4218–4230

    Article  Google Scholar 

  • Wang CH, Li FC (2020) Economic design under gamma shock model of the control chart for sustainable operations. Ann Oper Res 290(1):169–190

    Article  MathSciNet  MATH  Google Scholar 

  • Woodall WH, Montgomery DC (1999) Research issues and ideas in statistical process control. J Qual Technol 31(4):376–386

    Article  Google Scholar 

  • Yang SF, Rahim MA (2006) Multivariate extension to the economical design of control chart under Weibull shock model. J Stat Comput Simul 76(12):1035–1047

    Article  MathSciNet  MATH  Google Scholar 

  • Yang YM, Su CY, Pearn WL (2010) Economic design of \(\bar{X}\)-control charts for continuous flow process with multiple assignable causes. Int J Prod Econ 128(1):110–117

    Article  Google Scholar 

  • Yu FJ, Rahim MA, Chin H (2007) Economic design of VSI control charts. Int J Prod Res 45(23):5639–5648

    Article  MATH  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Due to the increasing use of control charts to monitor and improve the quality of manufactured goods in production and industrial processes, the selection of parameters related to the design of control charts for managers and quality engineers is essential. Therefore, in this paper, we present a novel and practical model to determine the design parameters of control charts to minimize the costs associated with monitoring the production process and eliminating the deficiencies of previous models. It should be pointed out that more than 6 decades have passed since the first article presented by Duncan in this field. Based on his article, many types of research have been published in various journals. In Duncan (1971) and all the researches based on it, the economic design of control charts in the presence of multiple independent assignable causes has been performed with the assumption that after the occurrence of one assignable cause, another assignable cause will definitely not occur until the end of the quality cycle. Not only conclusive consideration of such an assumption is inconsistent with the independent assumption of the time of occurrence of assignable causes, but so far no study has been done on the conditions of occurrence of such an assumption in practice. Therefore, in this paper, after stating a fundamental error in the collection of papers published in these decades of Duncan's model, by presenting a new model, we calculate the probability of this assumption and prove its dependence on design parameters under the Weibull shock model. The optimal values of the design parameters for the \(\bar{X}\) control chart in our model are compared with the Chen and Yang models, where the results indicate a severe deviation of their model from reality. Our findings show that this deficiency in previous models severely underestimates the quality cycle costs in manufacturing processes (approximately 11.8% to 195.8% underestimation of the actual value). Therefore, according to the stated contents and the special origin of control chart applications in monitoring production processes, we believe that this manuscript is appropriate for publication in your journal’s scope.

Corresponding author

Correspondence to M. Bameni Moghadam.

Ethics declarations

Competing interests

There are no relevant financial or non-financial competing interests to report.

Ethical statement

We confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere. Also, the funding and informed consent statement are not applicable.

Appendix

Appendix

Proof of Theorem 1

  1. 1.

    From Eq. (2), \(w_{j} = j^{\frac{1}{k}} h_{1}\) is obtained. According to Fig. 1, the random variable X represents the time elapsed from the beginning of the quality cycle to the issuance of the true alarm. In order to summarize, we define the steps of proving the following equations:

    $$ \lambda = \mathop \sum \limits_{i = 1}^{m} \lambda_{i} ,\quad \lambda_{ - i} = \lambda - \lambda_{i} $$
    (25)
    $$ \left\{ {{\mathbf{T}}_{{{\mathbf{ - i}}}} > X} \right\} = \{ T_{1} > X, \ldots ,T_{i - 1} > X, T_{i + 1} > X , \ldots ,T_{m} > X\} $$
    (26)

    Clearly with respect to Eq. (26) the occurrence of the cause of the ith documentable cause before the issuance of the true alarm and the absence of other attributable causes until the issuance of the true alarm ({Ii}) with the occurrence \(\{ T_{i} \le X ,T_{ - i} > X\}\) is equivalent, so using the law we have the total probability:

    $$ \begin{aligned} P\left( {I_{i} } \right) & = P\left( {T_{i} \le X ,{\mathbf{T}}_{{{\mathbf{ - i}}}} > X} \right) \\ & = \mathop \sum \limits_{j = 1}^{\infty } P(T_{i} \le w_{j} ,{\mathbf{T}}_{{{\mathbf{ - i}}}} > w_{j} ,X = w_{j} ) \\ & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{l = 1}^{j} P\left( {w_{l - 1} < T_{i} \le w_{l} ,{\mathbf{T}}_{{{\mathbf{ - i}}}} > w_{j} ,X = w_{j} } \right) \\ \end{aligned} $$
    (27)

    According to the definition of variables as well as assumptions we have:

    $$ P\left( {X = w_{j} |w_{l - 1} < T_{i} \le w_{l} ,{\mathbf{T}}_{{{\mathbf{ - i}}}} > w_{j} } \right) = \beta_{i}^{j - l} (1 - \beta_{i} ) $$
    (28)
    $$ P\left( {w_{l - 1} < T_{i} \le w_{l} } \right) = \left( {1 - {\text{e}}^{{ - \lambda_{i} h^{k} }} } \right) \cdot {\text{e}}^{{ - \lambda_{i} \left( {l - 1} \right)h_{1}^{k} }} $$
    (29)
    $$ P\left( {{\mathbf{T}}_{{{\mathbf{ - i}}}} > w_{j} |w_{l - 1} < T_{i} \le w_{l} } \right) = {\text{e}}^{{ - \lambda_{ - i} jh_{1}^{k} }} $$
    (30)

    From Eqs. (28) to (30) we have:

    $$ \begin{aligned} P\left( {I_{i} } \right) & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{l = 1}^{j} \beta_{i}^{j - l} (1 - \beta_{i} )\left( {1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} } \right).{\text{e}}^{{ - \lambda_{i} \left( {l - 1} \right)h_{1}^{k} }} {\text{e}}^{{ - \lambda_{ - i} jh_{1}^{k} }} \\ & = \mathop \sum \limits_{j = 1}^{\infty } (1 - \beta_{i} )(1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} )\frac{{\left( {{\text{e}}^{{ - \lambda h_{1}^{k} }} } \right)^{j} - \left( {\beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} } \right)^{j} }}{{{\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} - \beta_{i} }} \\ & = \frac{{\left( {1 - \beta_{i} } \right)\left( {1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} } \right){\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }}{{(1 - e^{{ - \lambda h_{1}^{k} }} )(1 - \beta_{i} e^{{ - \lambda_{ - i} h_{1}^{k} }} )}} \\ \end{aligned} $$
    (31)

    Clearly \(\left\{ {I = 1} \right\} = \bigcup\nolimits_{i = 1}^{m} {I_{i} }\) and since we have \(I_{i} \cap I_{j} = \emptyset\) for every i ≠ j, therefore, \(P\left( {I = 1} \right) = \sum\nolimits_{i = 1}^{m} P \left( {I_{i} } \right)\).

  2. 2.

    Considering that for \(i = 1, 2, \ldots ,m\), \(\lim\nolimits_{{h \to 0^{ + } }} P\left( {I_{i} } \right) = \frac{0}{0}\), using the hopital rule, it can be easily shown that \(\lim\nolimits_{{h \to 0^{ + } }} P\left( {I_{i} } \right) = \lambda_{i} /\lambda\) and therefore \(\lim\nolimits_{{h \to 0^{ + } }} P\left( I \right) = 1\).

  3. 3.

    Clearly for \(i = 1, 2, \ldots ,m\), \(\lim\nolimits_{L \to + \infty } \beta_{i} = 1\) resulting in \(\lim\nolimits_{L \to + \infty } P\left( I \right) = 0\).

Proof of Lemma 1

Given that it is assumed that the time of taking and interpreting the sample is negligible, then the true alarm will occur in one of the sampling times, i.e. \(w_{1}\), \(w_{2}\), etc. Therefore, according to the Eqs. (28) to (30), we have

$$ \begin{aligned} E\left( {X|I = 1} \right) & = \sum\limits_{j = 1}^{\infty } {w_{j} } P\left( {X = w_{j} |I = 1} \right) = \sum\limits_{j = 1}^{\infty } {\sum\limits_{i = 1}^{m} {w_{j} } } \frac{{P(T_{i} \le w_{j} ,T_{ - i} > w_{j} ,X = w_{j} )}}{P(I = 1)} \\ & = \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{\infty } {\left[ {w_{j} \frac{{(1 - \beta_{i} )(1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} )}}{P(I = 1)}\frac{{\left( {{\text{e}}^{{ - \lambda h_{1}^{k} }} } \right)^{j} - \left( {\beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} } \right)^{j} }}{{{\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} - \beta_{i} }}} \right]} } . \\ \end{aligned} $$

Proof of Lemma 2

Clearly if \(T = \min (T_{1} , \ldots ,T_{m} )\) then \(X_{1} = T\) and we have:

$$ E\left( {X_{1} |I = 1} \right) = \mathop \int \limits_{0}^{\infty } tf\left( {t|I = 1} \right){\text{d}}t = \mathop \sum \limits_{j = 1}^{\infty } \mathop \int \limits_{{w_{j - 1} }}^{{w_{j} }} tf\left( {t|I = 1} \right){\text{d}}x $$

Therefore, it suffices to obtain \(f(t|I = 1)\) for \(w_{j - 1} < t < w_{j}\) as follows:

$$ \begin{aligned} f\left( {t|I = 1} \right){\text{d}}t & \approx P\left( {t < T < t + {\text{d}}t|I = 1} \right) \\ & = \mathop \sum \limits_{l = 1}^{\infty } \frac{{P\left( {t < T < t + {\text{d}}t,I = 1,X = w_{l} } \right)}}{{P\left( {I = 1} \right)}} \\ & = \mathop \sum \limits_{l = j}^{\infty } \frac{{P\left( {t < T < t + {\text{d}}t,I = 1,X = w_{l} } \right)}}{{P\left( {I = 1} \right)}} \\ & = \mathop \sum \limits_{l = j}^{\infty } \frac{{P\left( {t < T < t + {\text{d}}t,\bigcup\nolimits_{i = 1}^{m} {\left\{ {T_{i} < w_{l} ,T_{ - i} > w_{l} ,X = w_{l} } \right\}} } \right)}}{{P\left( {I = 1} \right)}} \\ & = \mathop \sum \limits_{l = j}^{\infty } \mathop \sum \limits_{i = 1}^{m} \frac{{P\left( {t < T_{i} < t + {\text{d}}t,T_{i} < w_{l} ,T_{ - i} > w_{l} ,X = w_{l} } \right)}}{{P\left( {I = 1} \right)}} \\ & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{l = j}^{\infty } \frac{{\beta_{i}^{l - j} \left( {1 - \beta_{i} } \right) P\left( {t < T_{i} < t + {\text{d}}t} \right)P\left( {T_{ - i} > w_{l} } \right)}}{{P\left( {I = 1} \right)}} \\ \end{aligned} $$

Now if we have \({\text{d}}t\, \to \,0\) then,

$$ \begin{aligned} f\left( {t|I = 1} \right) & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{l = j}^{\infty } \frac{{\beta_{i}^{l - j} \left( {1 - \beta_{i} } \right) f_{{T_{i} }} \left( t \right)P\left( {T_{ - i} > w_{l} } \right)}}{{P\left( {I = 1} \right)}} \\ & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{l = j}^{\infty } \frac{{\beta_{i}^{l - j} \left( {1 - \beta_{i} } \right) {\text{e}}^{{ - \lambda_{ - i} lh_{1}^{k} }} f_{{T_{i} }} \left( t \right)}}{{P\left( {I = 1} \right)}} \\ & = \mathop \sum \limits_{i = 1}^{m} \left[ {\frac{1}{P(I = 1)}.\frac{{\left( {1 - \beta_{i} } \right) {\text{e}}^{{ - \lambda_{ - i} jh_{1}^{k} }} f_{{T_{i} }} (t)}}{{1 - \beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }}} \right]. \\ \end{aligned} $$

Therefore,

$$ \begin{aligned} E\left( {X_{1} |I = 1} \right) & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \int \limits_{{w_{j - 1} }}^{{w_{j} }} tf\left( {t|I = 1} \right){\text{d}}t \\ & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{j = 1}^{\infty } \left[ {\frac{{1 - \beta_{i} }}{{P\left( {I = 1} \right)}} \times \frac{{{\text{e}}^{{ - \lambda_{ - i} jh^{k} }} }}{{1 - \beta_{i} {\text{e}}^{{ - \lambda_{ - i} h^{k} }} }} \times \mathop \int \limits_{{w_{j - 1} }}^{{w_{j} }} t.k\lambda_{i} t^{k - 1} {\text{e}}^{{ - \lambda_{i} t^{k} }} {\text{d}}t} \right] \\ & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{j = 1}^{\infty } \left[ {\frac{{1 - \beta_{i} }}{P(I = 1)} \times \frac{{{\text{e}}^{{ - \lambda_{ - i} jh_{1}^{k} }} }}{{1 - \beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }} \times \frac{{\Gamma \left( {\frac{k + 1}{k},\lambda_{i} (j - 1)h_{1}^{k} } \right) - \Gamma \left( {\frac{k + 1}{k},\lambda_{i} jh_{1}^{k} } \right)}}{{\lambda_{i}^{1/k} }}} \right], \\ \end{aligned} $$

where the above relation \(\Gamma \left( {s,x} \right) = \mathop \int \nolimits_{x}^{\infty } t^{s - 1} {\text{e}}^{ - t} {\text{d}}t\) and \(f_{{T_{i} }} \left( t \right) = k\lambda_{i} t^{k - 1} {\text{e}}^{{ - \lambda_{i} t^{k} }}\).

Proof of Lemma 3

If \(Z_{2i}\) is the correction time of the ith attributable cause, then the average process correction time provided that only one attributable cause occurs until the true alarm is issued after identifying the attributable cause (\(E(X_{4} |I = 1)\)) Is equal to:

$$ \begin{aligned} E\left( {X_{4} |I = 1} \right) & = \mathop \sum \limits_{i = 1}^{m} Z_{2i} P\left( {X_{4} = Z_{2i} |I = 1} \right) \\ & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{j = 1}^{\infty } Z_{2i} \frac{{P(T_{i} \le w_{j} ,T_{ - i} > w_{j} ,X = w_{j} )}}{P(I = 1)} \\ & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{i = 1}^{m} Z_{2i} \frac{{(1 - \beta_{i} )(1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} )}}{P(I = 1)}\frac{{\left( {{\text{e}}^{{ - \lambda h_{1}^{k} }} } \right)^{j} - \left( {\beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} } \right)^{j} }}{{{\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} - \beta_{i} }} \\ & = \mathop \sum \limits_{i = 1}^{m} Z_{2i} \left[ {\frac{{(1 - \beta_{i} )(1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} )}}{{P(I = 1) ({\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} - \beta_{i} )}} \times \left( {\frac{{{\text{e}}^{{ - \lambda h_{1}^{k} }} }}{{1 - {\text{e}}^{{ - \lambda h_{1}^{k} }} }} - \frac{{\beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }}{{1 - \beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }}} \right)} \right] \\ & = \mathop \sum \limits_{i = 1}^{m} \left[ {Z_{2i} \frac{{P(I_{i} )}}{P(I = 1)}} \right]. \\ \end{aligned} $$

Proof of Lemma 4

If \(N_{{{\text{TST}}}}\) is equal to the number of samples taken from the process to the true alarm and \(N_{{{\text{INC}}}}\) is equal to the number of samples taken from the process in-control state, it is clearly \(N_{{{\text{OC}}}} = N_{{{\text{TST}}}} - N_{{{\text{INC}}}}\). Therefore, \(E\left( {N_{{{\text{OC}}}} |I = 1} \right) = E\left( {N_{{{\text{TST}}}} |I = 1} \right) - E(N_{{{\text{INC}}}} |I = 1)\), where,

$$ \begin{aligned} E\left( {N_{{{\text{TST}}}} |I = 1} \right) & = \mathop \sum \limits_{j = 1}^{\infty } j .\frac{{P(N_{{{\text{TST}}}} = j,I = 1)}}{P(I = 1)} \\ & = \mathop \sum \limits_{j = 1}^{\infty } j .\frac{{P\left( {\bigcup\nolimits_{i = 1}^{m} {\left\{ {T_{i} \le w_{j} ,T_{ - i} > w_{j} ,X = w_{j} } \right\}} } \right)}}{P(I = 1)} \\ & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{i = 1}^{m} j .\frac{{P(T_{i} \le w_{j} ,T_{ - i} > w_{j} ,X = w_{j} )}}{P(I = 1)} \\ & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{i = 1}^{m} j .\frac{{(1 - \beta_{i} )(1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} )}}{P(I = 1)}\frac{{\left( {{\text{e}}^{{ - \lambda h_{1}^{k} }} } \right)^{j} - \left( {\beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} } \right)^{j} }}{{{\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} - \beta_{i} }}. \\ & = \mathop \sum \limits_{i = 1}^{m} \left[ {\frac{{(1 - \beta_{i} )(1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} )}}{{P(I = 1) ({\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} - \beta_{i} )}}\left[ {\frac{{{\text{e}}^{{ - \lambda h_{1}^{k} }} }}{{\left( {1 - {\text{e}}^{{ - \lambda h_{1}^{k} }} } \right)^{2} }} - \frac{{\beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }}{{\left( {1 - \beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} } \right)^{2} }}} \right]} \right] \\ & = \mathop \sum \limits_{i = 1}^{m} \left[ {\frac{{P(I_{i} )}}{P(I) }\left[ {\frac{{{\text{e}}^{{ - \lambda h_{1}^{k} }} }}{{1 - {\text{e}}^{{ - \lambda h_{1}^{k} }} }} + \frac{1}{{1 - \beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }}} \right]} \right], \\ \end{aligned} $$

and

$$ \begin{aligned} E(N_{{{\text{INC}}}} |I = 1) & = \mathop \sum \limits_{j = 1}^{\infty } j .\frac{{P(N_{{{\text{INC}}}} = j,I = 1)}}{P(I = 1)} \\ & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{l = 1}^{\infty } j .\frac{{P\left( {w_{j} < T < w_{j + 1} ,\bigcup\nolimits_{i = 1}^{m} {\left\{ {T_{i} \le w_{l} ,T_{ - i} > w_{l} ,X = w_{l} } \right\}} } \right)}}{P(I = 1)} \\ & = \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{l = j + 1}^{\infty } j .\frac{{P\left( {\bigcup\nolimits_{i = 1}^{m} {\left\{ {w_{j} < T_{i} < w_{j + 1} ,T_{i} \le w_{l} ,T_{ - i} > w_{l} ,X = w_{l} } \right\}} } \right)}}{P(I = 1)} \\ & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{l = j + 1}^{\infty } j .\frac{{P(w_{j} < T_{i} < w_{j + 1} ,T_{ - i} > w_{l} ,X = w_{l} )}}{P(I = 1)} \\ & = \mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{j = 1}^{\infty } \mathop \sum \limits_{l = j + 1}^{\infty } j .\left( {1 - \beta_{i} } \right)\beta_{i}^{l - j - 1} \frac{{P\left( {w_{j} < T_{i} < w_{j + 1} } \right)P(T_{ - i} > w_{l} )}}{P(I = 1)} \\ & = \mathop \sum \limits_{i = 1}^{m} \left[ {\frac{{\left( {1 - \beta_{i} } \right)\left( {1 - {\text{e}}^{{ - \lambda_{i} h_{1}^{k} }} } \right){\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} }}{{P\left( {I = 1} \right) (1 - \beta_{i} {\text{e}}^{{ - \lambda_{ - i} h_{1}^{k} }} )}} \times \frac{{{\text{e}}^{{ - \lambda h_{1}^{k} }} }}{{\left( {1 - {\text{e}}^{{ - \lambda h_{1}^{k} }} } \right)^{2} }}} \right] \\ & = \frac{{{\text{e}}^{{ - \lambda h_{1}^{k} }} }}{{1 - {\text{e}}^{{ - \lambda h_{1}^{k} }} }}. \\ \end{aligned} $$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, S.R., Bameni Moghadam, M. & Eskandari, F. Fundamental Changes in Theory of Duncan’s Model for Economic Design of Control Charts in the Presence of Multiple Assignable Causes. Iran J Sci Technol Trans Sci 46, 1613–1628 (2022). https://doi.org/10.1007/s40995-022-01365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-022-01365-8

Keywords

Navigation