Skip to main content

Advertisement

Log in

Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The physical characteristics of a shape memory alloy can be controlled by different production techniques and the rate of constituents’ contribution. In this study, CuAlNiHf shape memory alloys, with three different amounts of Hf, were produced by the induction melting method. Many measurements such as differential scanning calorimetry (DSC), scanning electron microscope, energy dispersive X-ray, and the stress–strain test were carried out. The DSC measurement showed that the austenite transformation temperatures were decreased by doping more amount of hafnium into the alloy. All specimens showed a wide temperature hysteresis, which decreased by increasing Hf content. Also, the elastic modulus was raised by increasing the Hf amount. Although \({\gamma }_{1}^{{\prime}}\) and \({\beta }_{1}^{{\prime}}\) are the dominant phases in the CuAlNiHf with low Hf composition, substituting Cu with Hf enhanced the amount \({\beta }_{1}^{{\prime}}\)-phase compared to \({\gamma }_{1}^{{\prime}}\)-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amini A, Beladi H, Hameed N, Will F (2012) Effects of dynamic loading on nano-scale depth-recovery and damping property of single crystal CuAlNi shape memory alloy. J Alloys Compd 545:222–224

    Article  Google Scholar 

  • Aydogdu A, Aydogdu Y, Adiguzel O (2004) Long-term ageing behaviour of martensite in shape memory Cu–Al–Ni alloys. J Mater Process Technol 153:164–169

    Article  Google Scholar 

  • Bouabdallah M, Baguenane-Benalia G, Saadi A, Cheniti H, Gachon J-C, Patoor E (2013) Precipitation sequence during ageing in β1 phase of Cu–Al–Ni shape memory alloy. J Therm Anal Calorim 112:279–283

    Article  Google Scholar 

  • Buytoz S, Dagdelen F, Qader I, Kok M, Tanyildizi B (2019) Microstructure analysis and thermal characteristics of nitihf shape memory alloy with different composition. Met Mater Int. https://doi.org/10.1007/s12540-019-00444-7

    Article  Google Scholar 

  • Cırak ZD, Kök M (2018) Investigation of the thermal and microstructural changes of CuAlNiNb quaternary shape memory alloys by different niobium amount. Eur Phys J Plus 133:288

    Article  Google Scholar 

  • Dağdelen F, Aldalawi MAK, Kök M, Qader IN (2019) Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2019-12479-3

    Article  Google Scholar 

  • Dagdelen F, Kok M, Qader I (2019) Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Met Mater Int 25:1420–1427. https://doi.org/10.1007/s12540-019-00298-z

    Article  Google Scholar 

  • Dagdelen F, Esra B, Qader IN, Ozen E, Kok M, Kanca MS, Abdullah SS, Mohammed SS (2020) Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM 72:1664–1672. https://doi.org/10.1007/s11837-020-04026-6

    Article  Google Scholar 

  • Duerig T, Melton K (1989) Wide hysteresis NiTiNb alloys. Paper presented at the European symposium on martensitic transformations

  • Ercan E, Dagdelen F, Qader IN (2020) Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. J Therm Anal Calorim 139:29–36. https://doi.org/10.1007/s10973-019-08418-y

    Article  Google Scholar 

  • Huang Y, Hu Q, Bruno N, Chen J-H, Karaman I, Ross JH, Li J (2015) Giant elastocaloric effect in directionally solidified Ni–Mn–In magnetic shape memory alloy. Scr Mater 105:42–45

    Article  Google Scholar 

  • Ibarra A, Rodriguez P, Recarte V, Pérez-Landazábal J, Nó M, San Juan J (2004) Internal friction behaviour during martensitic transformation in shape memory alloys processed by powder metallurgy. Mater Sci Eng A 370:492–496

    Article  Google Scholar 

  • Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113

    Article  Google Scholar 

  • Jhou W-T, Wang C, Ii S, Chiang H-S, Hsueh C-H (2018) TiNiCuAg shape memory alloy films for biomedical applications. J Alloys Compd 738:336–344

    Article  Google Scholar 

  • Kim KM, Yeom JT, Lee H-S, Yoon S-Y, Kim JH (2014) High temperature oxidation behavior of Ti–Ni–Hf shape memory alloy. Thermochim Acta 583:1–7. https://doi.org/10.1016/j.tca.2014.02.016

    Article  Google Scholar 

  • Kök M, Zardawi HSA, Qader IN, Kanca MS (2019) The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. Eur Phys J Plus 134:66. https://doi.org/10.1140/epjp/i2019-12479-3

    Article  Google Scholar 

  • Kök M, Qader IN, Mohammed SS, Öner E, Dağdelen F, Aydogdu Y (2020) Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Mater Res Express. https://doi.org/10.1088/2053-1591/ab5bef

    Article  Google Scholar 

  • Kok M, Al-Jaf AOA, Çirak ZD, Qader IN, Özen E (2020) Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. J Therm Anal Calorim. 139:3405–3413. https://doi.org/10.1007/s10973-019-08788-3

    Article  Google Scholar 

  • Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315

    Article  Google Scholar 

  • Mas B, Biggs D, Vieito I, Cladera A, Shaw J, Martínez-Abella F (2017) Superelastic shape memory alloy cables for reinforced concrete applications. Constr Build Mater 148:307–320

    Article  Google Scholar 

  • Mousavi T, Karimzadeh F, Abbasi M (2008) Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater Sci Eng A 487:46–51

    Article  Google Scholar 

  • Nouri A, Hodgson PD, Wen CE (2010) Biomimetic porous titanium scaffolds for orthopaedic and dental applications. InTech, London

    Google Scholar 

  • Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414

    Article  Google Scholar 

  • Pereira EC, Mathlakova LA, da Silva F-H, Lima ES, dos Santos PA, Monteiro SN (2018) Grain ejection associated with thermocycling of Cu-Al-Ni shape memory alloy. Mater Lett 210:54–57

    Article  Google Scholar 

  • Qader IN, Kök M, Dağdelen F (2019a) Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Phys B 553:1–5. https://doi.org/10.1016/j.physb.2018.10.021

    Article  Google Scholar 

  • Qader IN, Kök M, Dağdelen F, Aydogdu Y (2019b) A review of smart materials: researches and applications. El-Cezerî J Sci Eng 6:755–788. https://doi.org/10.31202/ecjse.562177

    Article  Google Scholar 

  • Qader IN, Ercan E, Faraj BAM, Kok M, Dagdelen F, Aydogdu Y (2020a) The influence of time-dependent aging process on the thermodynamic parameters and microstructures of quaternary Cu79–Al12–Ni4–Nb5 (wt%) shape memory alloy. Iran J Sci Technol Trans A Sci. 44:903–910. https://doi.org/10.1007/s40995-020-00876-6

    Article  Google Scholar 

  • Qader IN, Kok M, Cirak ZD (2020b) The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09758-w

    Article  Google Scholar 

  • Recarte V, Pérez-Landazábal J, Ibarra A, Nó M, San Juan J (2004) High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Mater Sci Eng A 378:238–242

    Article  Google Scholar 

  • Recarte V, Perez-Landazabal J, Rodrıguez P, Bocanegra E, No M, San Juan J (2004) Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys. Acta Mater 52:3941–3948

    Article  Google Scholar 

  • Saud SN, Bakar TAA, Hamzah E, Ibrahim MK, Bahador A (2015) Effect of quarterly element addition of cobalt on phase transformation characteristics of Cu-Al-Ni shape memory alloys. Metall Mater Trans A 46:3528–3542

    Article  Google Scholar 

  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad H (2015) Thermal aging behavior in Cu–Al–Ni–xCo shape memory alloys. J Therm Anal Calorim 119:1273–1284. https://doi.org/10.1007/s10973-014-4265-6

    Article  Google Scholar 

  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad H, Farahany S, Abdolahi A, Taheri M (2014) Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys. J Alloys Compd 612:471–478

    Article  Google Scholar 

  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad H, Zamri M, Tanemura M (2014) Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys. J Mater Eng Perform 23:3620–3629. https://doi.org/10.1007/s11665-014-1134-1

    Article  Google Scholar 

  • Saud SN, Hamzah E, Abubakar T, Zamri M, Tanemura M (2014) Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J Therm Anal Calorim 118:111–122. https://doi.org/10.1007/s10973-014-3953-6

    Article  Google Scholar 

  • Souza J, Modesto D, Silva R (2019) Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions. J Therm Anal Calorim 86:1–8

    Google Scholar 

  • Suresh N, Ramamurty U (2008) Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys. J Alloys Compd 449:113–118

    Article  Google Scholar 

  • Tatar C, Acar R, Qader IN (2020) Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. Eur Phys J Plus 135:311. https://doi.org/10.1140/epjp/s13360-020-00288-w

    Article  Google Scholar 

  • Tatar C, Yildirim Z (2017) Phase transformation kinetics and microstructure of NiTi shape memory alloy: effect of hydrostatic pressure. Bull Mater Sci 40:799–803

    Article  Google Scholar 

  • Yildiz K, Kok M (2014) Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J Therm Anal Calorim 115:1509–1514

    Article  Google Scholar 

  • Yuan B, Zhu M, Chung C (2018) Biomedical porous shape memory alloys for hard-tissue replacement materials. Materials 11:1716

    Article  Google Scholar 

  • Zhang X, Liu Q-S (2016) Influence of alloying element addition on Cu–Al–Ni high-temperature shape memory alloy without second phase formation. Acta Metall Sin (Engl Lett) 29:884–888

    Article  Google Scholar 

  • Zhang X, Zhao X, Wang F, Liu Q, Wang Q (2018) Microstructure, mechanical properties and shape memory effect of Cu–Hf–Al–Ni alloys. Mater Sci Technol 34:1–5

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Management Unit of the Scientific Research Projects of Firat University (FUBAP) (Project Numbers: FF.19.08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Nazem Qader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qader, I.N., Öner, E., Kok, M. et al. Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iran J Sci Technol Trans Sci 45, 343–349 (2021). https://doi.org/10.1007/s40995-020-01008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-01008-w

Keywords

Navigation