Skip to main content
Log in

AlSi5Mg0.3 Alloy for the Manufacture of Automotive Wheels

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The heat-treated AlSi7Mg0.3 alloy is the standard wheel alloy as it offers the best compromise between fatigue strength and elongation. Alloys with less than 7 wt% Si may also be of interest for the manufacture of aluminium wheels to limit Si poisoning that impairs grain refinement. Hence, the potential of AlSi5Mg0.3 alloy was investigated as it could offer superior mechanical properties owing to a smaller grain structure. AlSi5Mg0.3 alloy does indeed exhibit smaller grains but fails to offer higher mechanical properties. AlSi7Mg0.3 alloy with a smaller dendritic structure but coarser grains is superior. The higher fluidity of the latter is believed to offer better feeding characteristics, which in turn improves the soundness of the casting and thus leads to superior structural quality and mechanical properties. An overall industrial assessment favours the standard Al7Si0.3 Mg alloy in the manufacture of light alloy wheels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Applications—Chassis & Suspension—Wheels—The aluminium automotive manual: https://european-aluminium.eu/media/1563/aam-applications-chassis-suspension-3-wheels.pdf

  2. A. Manente, G. Timelli, Optimizing the heat treatment process of cast aluminium alloys, in Recent Trends in Processing and Degradation of Aluminium Alloys, ed. by Z. Ahmad (Intech, Rijeka, 2011)

    Google Scholar 

  3. M. Tocci, A. Pola, G.M. La Vecchia, M. Modigell, Procedia Eng. 109, 303–311 (2015)

    Article  Google Scholar 

  4. European Aluminium Association, The Automotive Manual (2011). https://www.european-aluminium.eu/media/1514/1-introduction_2015.pdf

  5. https://www.engineeringclicks.com/aluminium-car-wheels/

  6. W. Zhao, L. Zhang, Z. Wang, H. Yan, Adv. Mater. Res. 189–193, 3862–3865 (2011)

    Article  Google Scholar 

  7. B. Zhang, S.L. Cockcroft, D.M. Maijer, J.D. Zhu, A.B. Phillion, JOM 57, 36–43 (2005)

    Article  Google Scholar 

  8. G.K. Sigworth, Int. J. Metalcast. 5, 7–22 (2011)

    Article  Google Scholar 

  9. G.K. Sigworth, Int. J. Metalcast. 8, 7–20 (2014)

    Article  Google Scholar 

  10. G.K. Sigworth, T.A. Kuhn, Int. J. Metalcast. 1, 31–40 (2007)

    Article  Google Scholar 

  11. G.K. Sigworth, Int. J. Metalcast. 2, 19–40 (2008)

    Article  Google Scholar 

  12. US Patent Application No. US 4995917 A, Manufacturing process for die-cast light-metal wheels of passenger cars (1991)

  13. European Patent Application No. EP 0021227 A2 Aluminium wheel for vehicles (1981)

  14. A.M. Samuel, H.W. Doty, S. Valtierre et al., Int. J. Metalcast. 11, 305–320 (2017)

    Article  Google Scholar 

  15. Y. Birol, Mater. Sci. Technol. 28, 385–389 (2012)

    Article  Google Scholar 

  16. Y. Birol, Int. J. Cast Met. Res. 26, 22–27 (2013)

    Article  Google Scholar 

  17. D. Qiu, J.A. Taylor, M.-X. Zhang, P.M. Kelly, Acta Mater. 55, 1447–1456 (2007)

    Article  Google Scholar 

  18. S.A. Kori, V. Auradi, B.S. Murty, M. Chakraborty, Mater. Forum 29, 387–393 (2005)

    Google Scholar 

  19. M. Sabatino, L. Arnberg, S. Brusethaug, D. Apelian, Int. J. Cast Met. Res. 19, 64 (2006)

    Article  Google Scholar 

  20. L.F. Porter, P.C. Rosenthal, Trans. Am. Foundrym. Soc. 60, 725–735 (1952)

    Google Scholar 

  21. E. Vandersluis, C. Ravindran, Metallogr. Microstruct. Anal. 6, 89–94 (2017)

    Article  Google Scholar 

  22. O. El Sabei Elsebaie, A.M. Samuel, F.H. Samuel, J. Mater. Sci. 46, 3027–3045 (2011)

    Article  Google Scholar 

  23. Aluminum and Aluminum Alloys—Sayfa 523—Google Kitaplar Sonucu

  24. P.N. Anyalebechi, Effects of alloying elements and solidification conditions on secondary dendrite arm spacing in aluminium alloys, in EPD Congress TMS (2004)

  25. M. Easton, C. Davidson, D. St John, Metall. Mater. Trans. 41A, 1528–1538 (2010)

    Article  Google Scholar 

  26. M. Djurdjevic, J. Pavlovic, G. Byczynski, Pract. Metallogr. 46, 97–114 (2009)

    Article  Google Scholar 

  27. S. Shivkumar, L. Wang, C. Keller, J. Mater. Eng. Perform. 3, 83–90 (1994)

    Article  Google Scholar 

  28. M. Merlin, G. Timelli, F. Bonollo, G.L. Garagnani, J. Mater. Process. Technol. 209, 1060–1073 (2009)

    Article  Google Scholar 

  29. M. Amne Elahi, S.G. Shabestari, Trans. Nonferr. Met. Soc. China 26, 956–965 (2016)

    Article  Google Scholar 

  30. G.E. Totten, D.S. MacKenzie (eds.), Handbook of Aluminum: Physical Metallurgy and Processes, vol. 1 (Marcel Dekker, Inc., New York, 2003)

    Google Scholar 

  31. J. Campbell, Castings, the New Metallurgy of Cast Metals, 2nd edn. (Elsevier, Amsterdam, 2003)

    Google Scholar 

  32. P.R. Goulart, W.R. Osorio, J.E. Spinelli, A. Garcia, Mater. Manuf. Process. 22, 328–332 (2007)

    Article  Google Scholar 

  33. N.L.M. Veldman, A.K. Dahle, D.H. Stjohn, L. Arnberg, Metall. Mater. Trans. 32A, 147–155 (2001)

    Article  Google Scholar 

  34. S. Gowri, F.H. Samuel, Metall. Mater. Trans. A 25A, 437–448 (1994)

    Article  Google Scholar 

  35. Q.G. Wang, C.J. Davidson, J. Mater. Sci. 36, 739–750 (2001)

    Article  Google Scholar 

  36. J. Campbell, The New Metallurgy of Cast Metals, Castings, 2nd edn. (Elsevier Butterworth-Heinemann, Amsterdam, 2003)

    Google Scholar 

  37. F. Grosselle, G. Timelli, F. Bonollo, Mater. Sci. Eng. A 527, 3536 (2010)

    Article  Google Scholar 

  38. S. Seifeddine, E. Sjölander, T. Bogdanoff, Mater. Sci. Appl. 4, 171 (2013)

    Google Scholar 

  39. L.A. Dobrzanski, R. Maniara, J. Sokolowski, W. Kasprzak, J. Mater. Process. Technol. 191, 317 (2007)

    Article  Google Scholar 

  40. L. Backerud, Solidification Characteristics of Aluminium Alloys. AFS Skanaluminium 2, 1–75 (1991)

    Google Scholar 

  41. K. Rhadhakrishna, S. Seshan, Cast Met. 2, 34–38 (1989)

    Article  Google Scholar 

  42. M.C. Flemings, T.Z. Kattamis, B.P. Bardes, AFS Trans. 99(1991), 501–506 (1991)

    Google Scholar 

  43. Q.G. Wang, Metall. Mater. Trans. 34A, 2887–2899 (2003)

    Article  Google Scholar 

  44. Q.G. Wang, C.H. Caceres, Mater. Sci. Eng. A A241, 72–82 (1998)

    Article  Google Scholar 

  45. M.C. Flemings, Solidification processing, vol. 341 (McGraw Hill, New York, 1974)

    Google Scholar 

Download references

Acknowledgement

It is a pleasure to thank Ugur Aybarc and Caner KALENDER for experimental work. The present work was supported by TUBITAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Birol.

Additional information

M. Kaba, A. Donmez, A. Cukur, and A. F. Kurban are undergraduate students.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaba, M., Donmez, A., Cukur, A. et al. AlSi5Mg0.3 Alloy for the Manufacture of Automotive Wheels. Inter Metalcast 12, 614–624 (2018). https://doi.org/10.1007/s40962-017-0191-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-017-0191-2

Keywords

Navigation