Skip to main content
Log in

Experimental investigations on the creep behaviour of PVB under different temperatures and humidity conditions

  • Research paper
  • Published:
Glass Structures & Engineering Aims and scope Submit manuscript

Abstract

The use of structural glass applications with requirements on post-fracture performance has so far only been possible under consideration of large-scale tests. The development of a design concept for fractured laminated glass is the subject of current research in structural glass engineering. This requires material models for the respected components (glass and polymer interlayer). Since moisture can reach the polymer interlayer in the fractured state via the cracks in the glass, investigations on the mechanical behaviour of the interlayer at different air humidity levels are necessary. In order to obtain the first systematically recorded parameters for the material behaviour of the most common polymeric interlayer used in laminated glass, standard Polyvinylbutyral (PVB), a test set up was developed for carrying out creep tests at different levels of load, humidity and temperatures. Subsequently, tests were conducted which were evaluated with the help of Digital Image Correlation. The results show that the stiffness of the interlayer decreases significantly with increasing relative humidity and temperature. Based on the data obtained, material models can be developed which take into account the influence of the interlayer moisture on the post fracture performance of laminated glass. Analogously to the time temperature superposition principle it can be shown, that the application of a time humidity superposition principle is possible and standard PVB is approximately a moisture rheological simple material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Becker, F.: Entwicklung einer Beschreibungsmethodik für das mechanische Verhalten unverstärkter Thermoplaste bei hohen Deformationsgeschwindigkeiten. Dissertation, Martin-Luther-Universtiät Halle-Wittenberg (2009)

  • Blumrich, F.: Optische korrelationsbasierte Messtechnik mittels zufälliger Punktemuster. Dissertation. Universität Stuttgart (2009)

  • Botz, M., Kraus, M.A., Siebert, G.: Der Ansatz des Schubverbundes bei der Bemessung von Verbundgläsern, Teil 2—Grundlagen und Anwendungsbeispiele. Konstr. Ing. 01(2018), 43–52 (2018)

    Google Scholar 

  • Botz, M., Kraus, M.A., Siebert, G.: Untersuchungen zur thermomechanischen Modellierung der Resttragfähigkeit von Verbundglas. Glasbau, Frankfurt (2019)

    Book  Google Scholar 

  • DIN 18008-1: Glas im Bauwesen – Bemessungs- und Konstruktionsregeln – Teil 1: Begriffe und Grundlagen (2018)

  • DIN 53441: Prüfung von Kunstoffen, Spannungsrelaxationsversuch (1984) (Withdrawn)

  • DIN 53444: Prüfung von Kunststoffen, Zeitstand-Zugversuch (1990) (Withdrawn)

  • EN ISO 12543-4: Glass in Building—Laminated Glass and Laminated Safety Glass—Part 4: Test Methods for Durability (2011)

  • EN ISO 291: Plastics—Standard Atmospheres for Conditioning and Testing (2008)

  • Ensslen, F.: Zum Tragverhalten von Verbund-Sicherheitsglas unter Berücksichtigung der Alterung der Polyvinylbutyral-Folie. Dissertation, Ruhr-Universität Bochum, Bochum (2005)

    Google Scholar 

  • Galuppi, L., Royer-Cafagni, G.: The post-breakage response of laminated heat-treated glass under in plane and out of plane loading. Compos Part B 147, 227–239 (2018)

    Article  Google Scholar 

  • Gottfried, W.E.: Polymer-Werkstoffe, Struktur-Eigenschaften-Anwendung. Carl Hanser Verlag, Munich (2011)

    Google Scholar 

  • Grellmann, W.: Kunststoffprüfung. Carl Hanser Verlag, Munich (2015)

    Google Scholar 

  • Jenckel, E.: Zur Verwendung von Modellen für das plastisch-elastische Verhalten. Kolloid Zeitschrift, 134(47) (1953). https://doi.org/10.1007/BF01513742

  • Kothe, M.: Alterungsverhalten von polymeren Zwischenschichtmaterialien im Bauwesen. Dissertation, Technische Universität Dresden, Dresden (2013)

    Google Scholar 

  • Kraus, M.A.: Machine Learning Techniques for the Material Parameter Identification of Laminated Glass in the Intact and Post-Fracture State. Dissertation, Universität der Bundeswehr München, Neubiberg (2019)

    Google Scholar 

  • Kraus, M.A., Niederwald, M.: Generalized collocation method using Stiffness matrices in the context of the Theory of Linear viscoelasticity (GUSTL). Tech. Mech. 37(1), 82–106 (2017b)

    Google Scholar 

  • Kraus, M.A., Botz, M., Siebert, G.: Der Ansatz des Schubverbundes bei der Bemessung von Verbundgläsern, Teil 1 - Grundlagen und Anwendungsbeispiele. Konstr. Ing. 06(2017), 43–51 (2017a)

    Google Scholar 

  • Kuntsche, J.: Mechanisches Verhalten von Verbundglas unter zeitabhängiger Belastung und Explosionsbeanspruchung. Dissertation, Technische Universität Darmstadt, Darmstadt (2015)

    Book  Google Scholar 

  • Kuntsche, J., Schuster, M., Schneider, J.: Bemessung von Verbundsicherheitsglas unter Berücksichtigung des Schubverbunds. Der Bauing. 93, 28–36 (2018)

    Google Scholar 

  • Kuraray Europe GmbH, Division TROSIFOL: TROSIFOL Manual - The Processing of TROSIFOL PVB Film (2014)

  • NEN_2608: Glass in building – Requirements and determination method (2014)

  • ÖNORM B 3716 – 1: Glas im Bauwesen – Konstruktiver Glasbau – Teil 1: Grundlagen (Anforderungen an die Sicherheit, Festigkeitswerte, Einwirkungen, Bemessungen) (2016)

  • PRCEN/TS XXXX-1:2018: Structural Glass—Design and Construction Rules—Part 1: Basis of Design and Materials (2018)

  • Rühl, A.: On the Time and Temperature Dependent Behaviour of Laminated Amorphous Polymers Subjected to Low-Velocity Impact. Technische Universität Darmstadt, Darmstadt (2017)

    Book  Google Scholar 

  • Sackmann, V.: Untersuchungen zur Dauherhaftigkeit des Schubverbundes in Verbundsicherheitsglas mit unterschiedlichen Folien aus Polyinylbutyral. Dissertation, Technische Universität München, Munich (2007)

    Google Scholar 

  • Schuler, C.: Einfluss des Materialverhaltens von Polyvinylbutyral auf das Tragverhalten von verbundsicherheitsglas in Abhängigkeit von Temperatur und Belastung. Dissertation, Technische Universität München, Munich (2003)

    Google Scholar 

  • Schwarzl, P.D.F.R.: Polymermechanik. Springer, Berlin, Heidelberg, New York (1990)

    Book  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, H.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14) (1955). https://doi.org/10.1021/ja01619a008

    Article  Google Scholar 

  • Ylinen, A.: Über die Bestimmung der zeitbedingten elastischen und Festigkeitseigenschaften des Holzes mit Hilfe eines allgemeinen nichtlinear viskoelastischen rheologischen Modelles. Holz Roh Werkst. 23(5), 193–196 (1965). https://doi.org/10.1007/BF02612966

    Article  Google Scholar 

  • Z-70.3-230: Allgemeine bauaufsichtliche Zulassung Z-70.3-230: Verbundglas aus der Produktfamilie SAFLEX DG mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.). (2016)

  • Z-70.3-236: Allgemeine bauaufsichtliche Zulassung Z-70.3-236 Verbund-Sicherheitsglas mit der PVB-Folie TROSIFOL ES mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.). (2016)

Download references

Acknowledgements

The authors thank kuraray, Devision Trosifol for providing and preparing the tested interlayer and the TechnicalUniversity Darmstadt, Institute of Structural Mechanics and Design (Miriam Schuster) for the support in the sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Botz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botz, M., Wilhelm, K. & Siebert, G. Experimental investigations on the creep behaviour of PVB under different temperatures and humidity conditions. Glass Struct Eng 4, 389–402 (2019). https://doi.org/10.1007/s40940-019-00098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40940-019-00098-2

Keywords

Navigation