Skip to main content
Log in

Flag curvatures of homogeneous Finsler spaces

  • Research/Review Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce the notions of spray vector and connection operator to give efficient curvature formulas for a homogeneous Finsler space. Thus the flag curvatures can be computed in the Lie algebra level. Applying these formulas, one can show that in several occasions the structure of the Lie algebra may have influence over the signs of the flag curvatures, regardless of the underlying Finsler metric. Some concrete examples are constructed to illustrate the concepts and the curvature behavior in Finsler geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseevskii, D.V., Kimel’fel’d, B.N.: Structure of homogeneous Riemann spaces with zero Ricci curvature. Funct. Anal. Appl. 9(2), 97–102 (1975)

    Article  MATH  Google Scholar 

  2. Aloff, S., Wallach, N.R.: An infinite family of 7-manifolds admitting positively curved Riemannian structures. Bull. Amer. Math. Soc. 81(1), 93–97 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez Paiva, J.C., Durán, C.E.: Isometric submersions of Finsler manifolds. Proc. Amer. Math. Soc. 129(8), 2409–2417 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)

    Google Scholar 

  5. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differential Geom. 66(3), 377–435 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, D., Shen, Z.: Finsler metrics of constant curvature on the Lie group \(S^3\). J. London Math. Soc. 66(2), 453–467 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bérard-Bergery, L.: Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive. J. Math. Pures Appl. 55(1), 47–67 (1976)

    MathSciNet  MATH  Google Scholar 

  8. Berger, M.: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Sc. Norm. Super. Pisa 15, 179–246 (1961)

    MATH  Google Scholar 

  9. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 10. Springer, Berlin (1987)

    Google Scholar 

  10. Chern, S.-S., Shen, Z.: Riemann–Finsler Geometry. Nankai Tracts in Mathematics, vol. 6. World Scientific, Singapore (2005)

    Google Scholar 

  11. Deng, S.: Fixed points of isometries of a Finsler space. Publ. Math. Debrecen 72(3–4), 469–474 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Deng, S., Hou, Z.: The group of isometries of a Finsler space. Pacific J. Math. 207(1), 149–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A 37(34), 8245–8253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, S., Hou, Z.: Naturally reductive homogeneous Finsler spaces. Manuscripta Math. 131(1–2), 215–229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Pure and Applied Mathematics. vol. 80, 2nd edn. Academic Press, New York (1978)

    Google Scholar 

  16. Hu, Z., Deng, S.: Curvatures of homogeneous Randers spaces. Adv. Math. 240, 194–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, L.: Einstein Finsler metrics on \(S^3\) with nonconstant flag curvature. Houston J. Math. 37(4), 1071–1086 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Huang, L.: On the fundamental equations of homogeneous Finsler spaces. Differential Geom. Appl. 40, 187–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, L.: Ricci curvatures of left invariant Finsler metrics on Lie groups. Israel J. Math. 207(2), 783–792 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jensen, G.R.: Einstein metrics on principal fibre bundles. J. Differential Geom. 8(4), 599–614 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vols. 1, 2. Interscience, New York (1963, 1969)

  22. Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57(5), 1421–1433 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lohkamp, J.: Metrics of negative Ricci curvature. Ann. Math. 140(3), 655–683 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rademacher, H.-B.: A sphere theorem for non-reversible Finsler metrics. Math. Ann. 328(3), 373–387 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, Z.: Projectively flat Finsler metrics of constant flag curvature. Trans. Amer. Math. Soc. 355(4), 1713–1728 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, Z.: On projectively flat \((\alpha,\beta )\)-metrics. Canadian Math. Bull. 52(1), 132–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, Z., Yu, C.: On a class of Einstein Finsler metrics. Internat. J. Math. 25(4), # 1450030 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Szabó, Z.I.: Positive definite Berwald spaces. Structure theorems on Berwald spaces. Tensor (NS) 35(1), 25–39 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Wallach, N.R.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math. 96(2), 277–295 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wolf, J.A.: Curvature in nilpotent Lie groups. Proc. Amer. Math. Soc. 15(2), 271–274 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wolter, T.H.: Einstein metrics on solvable groups. Math. Z. 206(3), 457–471 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wilking, B.: The normal homogeneous space \({\rm SU}(3){\times }{\rm SO}(3)/{\rm U}^\bullet (2)\) has positive sectional curvature. Proc. Amer. Math. Soc. 127(4), 1191–1994 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wilking, B., Ziller, W.: Revisiting homogeneous spaces with positive curvature. J. Reine Angew. Math. doi:10.1515/crelle-2015-0053

  35. Xu, M., Deng, S.: Normal homogeneous Finsler spaces. Transform. Groups. doi:10.1007/s00031-017-9428-7

  36. Xu, M., Deng, S.: Towards the classification of odd-dimensional homogeneous reversible Finsler spaces with positive flag curvature. Ann. Mat. Pura Appl. doi:10.1007/s10231-016-0624-1

  37. Xu, M., Deng, S., Huang, L., Hu, Z.: Even dimensional homogeneous Finsler spaces with positive flag curvature (2014). arXiv:1407.3582

  38. Ziller, W.: Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259(3), 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libing Huang.

Additional information

This work is supported by the National Natural Science Foundation of China Grant No. 11301283.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L. Flag curvatures of homogeneous Finsler spaces. European Journal of Mathematics 3, 1000–1029 (2017). https://doi.org/10.1007/s40879-017-0157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-017-0157-1

Keywords

Mathematics Subject Classification

Navigation