Skip to main content
Log in

Dynamic positioning of an oceanographic research vessel using fuzzy logic controller in different sea states

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

A dynamic positioning (DP) system is a computer-controlled system which maintains the positioning and heading of ship by means of active thrust. A DP system consist of sensors, observer, controller and thrust allocation algorithm. The purpose of this paper is to investigate the performance of proportional derivative type fuzzy controller with Mamdani interface scheme for dynamic positioning of an oceanographic research vessel (ORV) by numerical simulation. Nonlinear passive observer is used to filter the noise from the position and orientation. A nonlinear mathematical model of the ORV is subjected to the wave disturbance ranging from calm to phenomenal sea. Robustness and efficiency of the fuzzy logic controller is analysed in comparison with the multivariable proportional integral derivative (PID) and the linear quadratic regulator (LQR) controller. A simplified constrained linear quadratic algorithm is used for thrust allocation. The frequency response of the closed loop system with different controllers is analysed using the bode plot. The stability of controller is established using the Lyapunov criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. E. Alfaro-Cid, E.W. McGookin, D.J. Murray-Smith, T.I. Fossen, Genetic programming for the automatic design of controllers for a surface ship. IEEE Trans. Intell. Transp. Syst. 9(2), 311–321 (2008)

    Article  Google Scholar 

  2. K.J. Astrom, K.H. Johansson, Q.G. Wang, Design of decoupled PID controllers for mimo systems. In: Proceedings of the American Control Conference (ACC), vol. 3, pp. 2015–2020. IEEE (2001)

  3. F. Benetazzo, G. Ippoliti, S. Longhi, P. Raspa, Discrete time variable structure control for the dynamic positioning of an offshore supply vessel. IFAC Proceedings Volumes 45(8), 171–176 (2012)

  4. Y. Cao, Z. Zhou, W. Vorus, Application of a neural network predictor/controller to dynamic positioning of offshore structures. In: Dynamic Positionig Conference. Houston (2000)

  5. T.P. DeRensis, A robust linear dynamic positioning controller for a marine surface vehicle. Master’s thesis, NTNU, Norway (2013)

  6. N.T. Dong, Design of hybrid marine control systems for dynamic positioning. Ph.D. thesis, NUS,Singapore (2006)

  7. A.V. Fannemel, Dynamic positioning by nonlinear model predictive control. Master’s thesis, NTNU, Norway (2008)

  8. T.I. Fossen, Guidance and control of ocean vehicles (Wiley, New York, 1994)

    Google Scholar 

  9. T.I. Fossen, Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics (2002)

  10. T.I. Fossen, K.P. Lindegaard, R. Skjetne, Inertia shaping techniques for marine vessels using acceleration feedback. IFAC Proc. Vol. 35(1), 343–348 (2002)

    Article  Google Scholar 

  11. T.I. Fossen, J.P. Strand, Passive nonlinear observer design for ships using lyapunov methods: full-scale experiments with a supply vessel. Automatica 35(1), 3–16 (1999)

    Article  MathSciNet  Google Scholar 

  12. P. Fung, M. Grimble, Dynamic ship positioning using a self-tuning kalman filter. IEEE Trans. Autom. Control 28(3), 339–350 (1983). https://doi.org/10.1109/TAC.1983.1103226

    Article  MATH  Google Scholar 

  13. M. Grimble, Relationship between kalman and notch filters used in dynamic ship positioning systems. Electron. Lett. 14(13), 399–400 (1978)

    Article  Google Scholar 

  14. H. Halvorsen, Dynamic positioning for unmanned surface vehicles. Master’s thesis, NTNU, Norway (2008)

  15. M. Hamamatsu, Non linear dp controller. In: Dynaamic Positioning Conference (2002)

  16. C. Hammond, K. Horn, et al. Control system design and simulation for dynamically positioned vessels. In: Fall Meeting of the Society of Petroleum Engineers of AIME. Society of Petroleum Engineers (1968)

  17. J. Harbonn, et al. The terebel dynamic positioning system-results of five years of field work and experiments. In Offshore Technology Conference (1971)

  18. V. Hassani, A.J. Sorensen, A.M. Pascoal, N.T. Dong, Multiple model adaptive dynamic positioning. IFAC Proc. Vol. 45(27), 55–60 (2012)

    Article  Google Scholar 

  19. M. Hutton, B. Friedland, Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Autom. Control 20(3), 329–337 (1975)

    Article  MathSciNet  Google Scholar 

  20. Th Lee, Y. Cao, Ym Lin, The applications of a time-domain fuzzy logic controller for dynamic positioning of floating structures. Tamkang J. Sci. Eng. 5(3), 137–150 (2002)

    Google Scholar 

  21. T.H. Lee, Y. Cao, Y.M. Lin, Dynamic positioning of drilling vessels with a fuzzy logic controller. Int. J. Syst. Sci. 33(12), 979–993 (2002)

    Article  Google Scholar 

  22. K.P. Lindegaard, Acceleration feedback in dynamic positioning. Ph.D. thesis, NTNU, Norway (2003)

  23. K.P. Lindegaard, T.I. Fossen, Fuel-efficient rudder and propeller control allocation for marine craft: experiments with a model ship. IEEE Trans. Control Syst. Technol. 11(6), 850–862 (2003)

    Article  Google Scholar 

  24. T. Lokling, et al.: A new generation of dynamic positioning systems for vessels. In Offshore Technology Conference (1979)

  25. M. Margaliot, G. Langholz, Fuzzy lyapunov-based approach to the design of fuzzy controllers. Fuzzy Sets Syst. 106(1), 49–59 (1999)

    Article  MathSciNet  Google Scholar 

  26. M. Mehrzadi, Y. Terriche, C.L. Su, M.B. Othman, J.C. Vasquez, J.M. Guerrero, Review of dynamic positioning control in maritime microgrid systems. Energies 13(12), 3188 (2020)

    Article  Google Scholar 

  27. K.Y. Pettersen, T.I. Fossen, Underactuated dynamic positioning of a ship-experimental results. IEEE Trans. Control Syst. Technol. 8(5), 856–863 (2000)

    Article  Google Scholar 

  28. J. Pinkster, U. Nienhuis, et al. Dynamic positioning of large tankers at sea. In Offshore Technology Conference (1986)

  29. J. Pinkster, et al. Wave feed-forward as a means to improve dynamic positioning. In Offshore Technology Conference (1978)

  30. T.J. Ross, Fuzzy Logic with Engineering Applications (Wiley, New York, 2009)

    Google Scholar 

  31. W. Schneider, R. St John Jr, A hybrid computer study of a dynamic ship positioning system. Tech. rep., University of Houston (1970)

  32. R. Skjetne, O.N. Smogeli, T.I. Fossen, A nonlinear ship manoeuvering model: identification and adaptive control with experiments for a model ship. Model. Identif. Control 25(1), 3 (2004)

    Article  Google Scholar 

  33. A.J. Sorensen, S.I. Sagatun, T.I. Fossen, Design of a dynamic positioning system using model-based control. Control. Eng. Pract. 4(3), 359–368 (1996)

    Article  Google Scholar 

  34. M.E.N. Sorensen, E.S. Bjorne, M. Breivik, Performance comparison of backstepping-based adaptive controllers for marine surface vessels. In IEEE Conference on Control Applications (CCA), pp. 891–897. IEEE (2016)

  35. G. Stephanopoulos, Chemical Process Control, vol. 2. Prentice hall New Jersey (1984)

  36. D.A. Sveen, Robust and adaptive tracking control of surface vessel for synchronization with an rov: Practical implementation on cybership II. Master’s thesis, NTNU, Norway (2003)

  37. K. Tiwari, K. Hariharan, T. Rameesha, P. Krishnankutty, Prediction of a research vessel Manoeuvring using numerical pmm and free running tests. Ocean Syst. Eng. 10(3), 333–357 (2020)

    Google Scholar 

  38. K. Tiwari, P. Krishnankutty, Comparison of pid and lqr controllers for dynamic positioning of an oceanographic research vessel. In Proceedings of the Fifth International Conference in Ocean Engineering (ICOE2019), pp. 343–354. Springer (2021)

  39. K.N. Tiwari, Development of intelligent controllers for autonomous underwater vehicles. Master’s thesis, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India (2013)

  40. K.N. Tiwari, A. Balagopalan, P. Krishnankutty, Experimental investigation on the effects of froude number on manoeuvring characteristic of a research vessel. Ships and Offshore Structures pp. 1–12 (2020)

  41. K.N. Tiwari, P. Krishnankutty, Fuzzy logic controller for dynamic positioning of an offshore supply vessel. In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection (2017)

  42. K.N. Tiwari, L. Waghmare, P. Krishnankutty, Single input fuzzy logic controller tuning for steering control of autonomous underwater vehicle: Genetic algorithm approach. In: Control Conference (ICC), Hyderabad, Indian, pp. 335–340. IEEE (2016)

  43. M. Tomera, Nonlinear controller design of a ship autopilot. Int. J. Appl. Math. Comput. Sci. 20(2), 271–280 (2010)

    Article  Google Scholar 

  44. M. Triantafyllou, The design of a dynamic positioning system. In: OCEANS ’79, pp. 498–506 (1979). https://doi.org/10.1109/OCEANS.1979.1151203

  45. M. Wondergem, E. Lefeber, K.Y. Pettersen, H. Nijmeijer, Output feedback tracking of ships. IEEE Trans. Control Syst. Technol. 19(2), 442–448 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, K., Krishnankutty, P. Dynamic positioning of an oceanographic research vessel using fuzzy logic controller in different sea states. Mar Syst Ocean Technol 16, 221–236 (2021). https://doi.org/10.1007/s40868-021-00105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-021-00105-8

Keywords

Navigation