Skip to main content
Log in

From Mathematical Morphology to machine learning of image operators

  • Special issue commemorating the Golden Jubilee of the Institute of Mathematics and Statistics of the University of São Paulo
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Morphological image operators are a class of non-linear image mappings studied in Mathematical Morphology. Many significant theoretical results regarding the characterization of families of image operators, their properties, and representations are derived from lattice theory, the underlying foundation of Mathematical Morphology. A fundamental representation result is a pair of canonical decompositions for any translation-invariant operator as a union of sup-generating or an intersection of inf-generating operators, which in turn can be written in terms of two basic operators, erosions and dilations. Thus, in practice, a toolbox with functional operators can be built by composing erosions and dilations, and then operators of the toolbox can be further combined to solve image processing problems. However, designing image operators by hand may become a daunting task for complex image processing tasks, and this motivated the development of machine learning based approaches. This paper reviews the main contributions around this theme made by the authors and their collaborators over the years. The review covers the relevant theoretical elements, particularly the canonical decomposition theorem, a formulation of the learning problem, some methods to solve it, and algorithms for finding computationally efficient representations. More recent contributions included in this review are related to families of operators (hypothesis spaces) organized as lattice structures where a suitable subfamily of operators is searched through the minimization of U-curve cost functions. A brief account of the connections between morphological image operator learning and deep learning is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Note that the target images \(T_i\) are in general manually generated from observed images \(S_i\), usually with the aid of an image editor.

References

  1. Abu-Mostafa, Y., Lin, H., Magdon-Ismail, M.: Learning From Data. AMLBook (2012)

  2. Atashpaz-Gargari, E., Reis, M., Braga-Neto, U., Barrera, J., Dougherty, E.: A fast branch-and-bound algorithm for U-curve feature selection. Pattern Recognit. (2018). https://doi.org/10.1016/j.patcog.2017.08.013

  3. Banon, G., Barrera, J.: Minimal representations for translation-invariant set mappings by Mathematical Morphology. SIAM J. Appl. Math. (1991). https://doi.org/10.1137/0151091

  4. Banon, G., Barrera, J.: Decomposition of mappings between complete lattices by Mathematical Morphology. Part I. General lattices. Signal Process. (1993). https://doi.org/10.1016/0165-1684(93)90015-3

  5. Banon, G., Barrera, J.: Bases da Morfologia Matemática para a Análise de Imagens Binárias. IX Escola de Computação, Recife (1994) (In Portuguese)

    Google Scholar 

  6. Barrera, J., Salas, G.: Set operations on closed intervals and their applications to the automatic programming of morphological machines. J. Electron. Imaging (1996). https://doi.org/10.1117/12.240717

  7. Barrera, J., Banon, G., Lotufo, R.: Mathematical morphology toolbox for the khoros system. In: Proceedings of the SPIE 2300, Image Algebra and Morphological Image Processing V, 30 June 1994. SPIE (1993). https://doi.org/10.1117/12.179195

  8. Barrera, J., Dougherty, E., Tomita, N.: Automatic programming of binary morphological machines by design of statistically optimal operators in the context of computational learning theory. J. Electron. Imag. (1997). https://doi.org/10.1117/12.260010

  9. Barrera, J., Banon, G., Lotufo, R., Hirata, R., Jr.: MMach: a mathematical morphology toolbox for the KHOROS system. J. Electron. Imaging (1998). https://doi.org/10.1117/1.482637

  10. Barrera, J., Terada, R., Lotufo, R.A., Hirata, N.S.T., Hirata, R., Jr., Zampirolli, F.A.: An OCR based on Mathematical Morphology. In: Nonlinear Image Processing IX. Proceedings of SPIE, vol. 3304, pp. 197–208 (1998). https://doi.org/10.1117/12.304600

  11. Barrera, J., Terada, R., Hirata, R., Jr., Hirata, N.: Automatic programming of morphological machines by PAC learning. Fundam. Inform. (2000). https://doi.org/10.3233/FI-2000-411208

  12. Beucher, S.: Watersheds of functions and picture segmentation. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 82), pp. 1928–1931 (1982). https://doi.org/10.1109/ICASSP.1982.1171424

  13. Brun, M., Dougherty, E., Hirata, R., Barrera, J.: Design of optimal binary filters under joint multiresolution-envelope constraint. Pattern Recognit. Lett. (2003). https://doi.org/10.1016/S0167-8655(02)00217-9

  14. Brun, M., Hirata, R., Jr., Barrera, J., Dougherty, E.: Nonlinear filter design using envelopes. J. Math. Imaging Vis. (2004). https://doi.org/10.1023/B:JMIV.0000026558.10581.e6

  15. Castro, J.: Model selection for learning boolean hypothesis. PhD thesis, Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil (2018). https://doi.org/10.11606/T.45.2019.tde-02042019-231050

  16. Dellamonica, D., Jr., Silva, P., Humes, C., Jr., Hirata, N., Barrera, J.: An exact algorithm for optimal MAE stack filter design. IEEE Trans. Image Process. (2007). https://doi.org/10.1109/TIP.2006.888358

  17. Dornelles, M., Hirata, N.: A genetic algorithm based approach for combining binary image operators. In: Proceedings of 21st International Conference on Pattern Recognition, pp. 3184–3187 (2012)

  18. Dornelles, M., Hirata, N.: Selection of windows for W-operator combination from entropy based ranking. In: 28th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 64–71 (2015)

  19. Dougherty, E.: Optimal mean-square N-observation digital morphological filters I. Optimal binary filters. CVGIP Image Underst. (1992). https://doi.org/10.1016/1049-9660(92)90006-O

  20. Dougherty, E.R., Giardina, C.R.: Error bounds for morphologically derived measurements. SIAM J. Appl. Math. (1987). https://doi.org/10.1137/0147028

    Article  MathSciNet  MATH  Google Scholar 

  21. Dougherty, E.R., Haralick, M.: Unification of nonlinear filtering in the context of binary logical calculus, part I: binary filters. J. Math. Imaging Vis. 2(2), 173–183 (1992). https://doi.org/10.1007/bf00118588

    Article  MATH  Google Scholar 

  22. Dougherty, E., Lotufo, R.: Hands-on Morphological Image Processing, vol. 59. SPIE Press, Bellingham (2003)

  23. Dougherty, E.R., Barrera, J., Mozelle, G., Seungchan, K., Brun, M.: Multiresolution analysis for optimal binary filters. J. Math. Imaging Vis. (2001). https://doi.org/10.1023/A:1008311431244

  24. Estrela, G., Gubitoso, M., Ferreira, C., Barrera, J., Reis, M.: An efficient, parallelized algorithm for optimal conditional entropy-based feature selection. Entropy (2020). https://doi.org/10.3390/e22040492

    Article  MathSciNet  Google Scholar 

  25. Franchi, G., Fehri, A., Yao, A.: Deep morphological networks. Pattern Recognit. (2020). https://doi.org/10.1016/j.patcog.2020.107246

    Article  Google Scholar 

  26. Freeman, H.: Computer processing of line-drawing images. ACM Comput. 6(1), 57–97 (1974). https://doi.org/10.1145/356625.356627

    Article  MATH  Google Scholar 

  27. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice-Hall Inc, Upper Saddle River (2006)

    Google Scholar 

  28. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT, Cambridge (2016)

    MATH  Google Scholar 

  29. Goutsias, J.: Morphological analysis of discrete random shapes. J. Math. Imaging Vis. (1992). https://doi.org/10.1007/BF00118590

    Article  MathSciNet  MATH  Google Scholar 

  30. Haralick, R., Sternberg, S., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. (1987). https://doi.org/10.1109/TPAMI.1987.4767941

    Article  Google Scholar 

  31. Harvey, N., Marshall, S.: The use of genetic algorithms in morphological filter design. Signal Process. Image Commun. (1996). https://doi.org/10.1016/0923-5965(95)00033-X

  32. Hashimoto, R., Barrera, J.: From the sup-decomposition to sequential decompositions. J. Math. Imaging Vis. (2001). https://doi.org/10.1023/A:1012276422769

  33. Hashimoto, R., Barrera, J.: Sup-compact and Inf-compact representations of W-Operators. Fundam. Inform. 45(4), 283–294 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Hashimoto, R., Barrera, J.: A note on Park and Chin’s algorithm. IEEE Trans. Pattern Anal. Mach. Intell. (2002). https://doi.org/10.1109/34.982891

  35. Hashimoto, R., Barrera, J.: A greedy algorithm for decomposing convex structuring elements. J. Math. Imaging Vis. (2003). https://doi.org/10.1023/A:1022847527229

  36. Hashimoto, R., Barrera, J., Ferreira, C.: A combinatorial optimization technique for the sequential decomposition of erosions and dilations. J. Math. Imaging Vis. (2000). https://doi.org/10.1023/A:1008373522375

  37. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)

    Book  Google Scholar 

  38. Heijmans, H.: Morphological Image Operators. Academic Press, Boston, MA, USA (1994)

    MATH  Google Scholar 

  39. Hils, D.: Visual languages and computing survey: data flow visual programming languages. J. Vis. Lang. Comput. 3(1), 69–101 (1992). https://doi.org/10.1016/1045-926X(92)90034-J

    Article  Google Scholar 

  40. Hirata, N.: Multilevel training of binary morphological operators. IEEE Trans. Pattern Anal. Mach. Intell. (2009). https://doi.org/10.1109/TPAMI.2008.118

  41. Hirata, N., Barrera, J.: A unifying view for stack filter design based on graph search methods. Pattern Recognit. (2005). https://doi.org/10.1016/j.patcog.2005.02.018

  42. Hirata, N.S.T., Papakostas, G.A.: Omacn hine-learning morphological image operators. Mathematics (2021). https://doi.org/10.3390/math9161854

  43. Hirata, N., Barrera, J., Dougherty, E.: Design of statistically optimal stack filters. In: XII Brazilian Symposium on Computer Graphics and Image Processing, pp. 265–274 (1999). https://doi.org/10.1109/SIBGRA.1999.805734

  44. Hirata, N., Dougherty, E., Barrera, J.: A switching algorithm for design of optimal increasing binary filters over large windows. Pattern Recognit. (2000). https://doi.org/10.1016/S0031-3203(99)00165-X

  45. Hirata, N., Dougherty, E., Barrera, J.: Iterative design of morphological binary image operators. Opt. Eng. (2000). https://doi.org/10.1117/1.1327178

  46. Hirata, R., Jr., Dougherty, E., Barrera, J.: Aperture filters. Signal Process. (2000). https://doi.org/10.1016/S0165-1684(99)00162-0

  47. Hirata, N., Barrera, J., Terada, R., Dougherty, E.: The incremental splitting of intervals algorithm for the design of binary image operators. In: Talbot, H., Beare, R. (eds.) Proceedings of 6th International Symposium on Mathematical Morphology, pp. 219–228. CSIRO Publishing, Clayton (2002)

  48. Hirata, R., Barrera, J., Hashimoto, R., Dantas, D., Esteves, G.: Segmentation of microarray images by mathematical morphology. Real-Time Imaging 8(6), 491–505 (2002). https://doi.org/10.1006/rtim.2002.0291

    Article  MATH  Google Scholar 

  49. Hirata, R., Jr., Brun, M., Barrera, J., Dougherty, E.R.: Multiresolution design of aperture operators. J. Math. Imaging Vis. (2002). https://doi.org/10.1023/A:1020377610141

  50. Julca-Aguilar, F., Hirata, N.: Image operator learning coupled with CNN classification and its application to staff line removal. In: 14th IAPR International Conference on Document Analysis and Recognition (2017). https://doi.org/10.1109/ICDAR.2017.18

  51. Karp, R.: Reducibility among combinatorial problems. In: R. Miller, J. Thatcher (eds.) Proceedings of a symposium on the Complexity of Computer Computations. Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  52. Kleitman, D., Markowsky, G.: Dedekind’s problem: the number of isotone Boolean functions. II. Trans. Am. Math. Soc. 213, 373–390 (1975). https://doi.org/10.1090/S0002-9947-1975-0382107-0

    Article  MathSciNet  MATH  Google Scholar 

  53. Konstantinides, K., Rasure, J.R.: The Khoros software development environment for image and signal processing. IEEE Trans. Image Process. (1994). https://doi.org/10.1109/83.287018

  54. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  55. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2015). https://doi.org/10.1109/CVPR.2015.7298965

  56. Maragos, P.A.: A unified theory of translation-invariant systems with applications to morphological analysis and coding of images. PhD thesis, School of Electrical and Computer Engineering (ECE), Georgia Institute of Technology (1985)

  57. Marcondes, D., Simonis, A., Barrera, J.: Learning the hypotheses space from data: Learning space and u-curve property (2020). arxiv:2001.09532. ArXiv preprint

  58. Marcondes, D., Simonis, A., Barrera, J.: Learning the hypotheses space from data, part II: convergence and feasibility. arXiv preprint (2020). arxiv:2001.11578

  59. Martins-Jr., D., Cesar-Jr., R., Barrera, J.: W-operator window design by minimization of mean conditional entropy. Pattern Anal. Appl. (2006). https://doi.org/10.1007/s10044-006-0031-0

  60. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  61. Matheron, G., Serra, J.: The birth of mathematical morphology. In: Talbot, H., Beare, R. (eds.) Proceedings of 6th International Symposium on Mathematical Morphology, pp. 1–16. CSIRO Publishing, Clayton (2002)

  62. Mondal, R., Purkait, P., Santra, S., Chanda, B.: Morphological networks for image de-raining. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) Discrete Geometry for Computer Imagery. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_21

  63. Montagner, I., Hirata Jr, R., Hirata, N., Canu, S.: Kernel approximations for w-operator learning. In: 29th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 386–393 (2016)

  64. Montagner, I., Hirata, N., Hirata, R., Jr.: Staff removal using image operator learning. Pattern Recognit. (2017). https://doi.org/10.1016/j.patcog.2016.10.002

  65. Park, H., Chin, R.: decomposition of arbitrarily shaped morphological structuring elements. IEEE Trans. Pattern Anal. Mach. Intell. (1995). https://doi.org/10.1109/34.368156

  66. Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press, Rockville (1982)

    Book  Google Scholar 

  67. Reis, M.: Minimização de funções decomponíveis em curvas em U definidas sobre cadeias de posets – algoritmos e aplicações. PhD thesis, Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil (2012). https://doi.org/10.11606/T.45.2012.tde-05022013-123757

  68. Reis, M., Barrera, J.: Solving problems in mathematical morphology through reductions to the u-curve problem. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Springer (2013). https://doi.org/10.1007/978-3-642-38294-9_5

  69. Reis, M., Estrela, G., Ferreira, C., Barrera, J.: featsel: a framework for benchmarking of feature selection algorithms and cost functions. SoftwareX 6, 193–197 (2017). https://doi.org/10.1016/j.softx.2017.07.005

    Article  Google Scholar 

  70. Reis, M., Estrela, G., Ferreira, C., Barrera, J.: Optimal boolean lattice-based algorithms for the U-curve optimization problem. Inf. Sci. (2019). https://doi.org/10.1016/j.ins.2018.08.060

  71. Ris, M., Barrera, J., Martins-Jr, D.: U-curve: A branch-and-bound optimization algorithm for U-shaped cost functions on Boolean lattices applied to the feature selection problem. Pattern Recognit. (2010). https://doi.org/10.1016/j.patcog.2009.08.018

  72. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  73. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Process. 21(2), 129–154 (1990). https://doi.org/10.1016/0165-1684(90)90046-2

    Article  MathSciNet  MATH  Google Scholar 

  74. Ronse, C.: A lattice-theoretical morphological view on template extraction in images. J. Vis. Commun. Image Represent. (1996). https://doi.org/10.1006/jvci.1996.0024

  75. Ruderman, D.: The statistics of natural images. Netw. Comput. Neural Syst. (1994). https://doi.org/10.1088/0954-898X_5_4_006

  76. Santos, C., Hirata, N., Hirata, R., Jr.: An information theory framework for two-stage binary image operator design. Pattern Recognit. Lett. (2010). https://doi.org/10.1016/j.patrec.2009.03.019

  77. Schmitt, M.: Mathematical morphology and artificial intelligence: an automatic programming system. Signal Process. 16(4), 389–401 (1989). https://doi.org/10.1016/0165-1684(89)90032-7

    Article  Google Scholar 

  78. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Cambridge, MA, USA (1982)

    MATH  Google Scholar 

  79. Serra, J.: Image Analysis and Mathematical Morphology. Vol. 2: Theoretical Advances. Academic Press, Cambridge (1988)

  80. Serra, J., Vincent, L.: An overview of morphological filtering. Circuits Syst. Signal Process. 11(1), 47–108 (1992). https://doi.org/10.1007/BF01189221

    Article  MathSciNet  MATH  Google Scholar 

  81. Soille, P.: Morphological Image Analysis. Springer, Berlin (2003)

    MATH  Google Scholar 

  82. Sternberg, S.: Grayscale morphology. Comput. Vis. Graph. Image Process. 35(3), 333–355 (1986). https://doi.org/10.1016/0734-189X(86)90004-6

    Article  Google Scholar 

  83. Van Droogenbroeck, M., Talbot, H.: Fast computation of morphological operations with arbitrary structuring elements. Pattern Recognit. Lett. 17(14), 1451–1460 (1996). https://doi.org/10.1016/S0167-8655(96)00113-4

    Article  Google Scholar 

  84. Vincent, L.M.: Efficient computation of various types of skeletons. In: Loew, M.H. (ed.) Medical Imaging V: Image Processing, vol. 1445, pp. 297–311. International Society for Optics and Photonics, SPIE, Bellingham (1991). https://doi.org/10.1117/12.45227

  85. Wilson, S.S.: Training structuring elements in morphological networks. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, Chap. 1, pp. 1–41. Marcel Dekker, New York (1993). https://doi.org/10.1201/9781482277234

  86. Zhang, A., Lipton, Z., Li, M., Smola, A.: Dive into Deep Learning. Self-published, Open Source Book (2020). https://d2l.ai

Download references

Acknowledgements

The authors thank Professors George Matheron and Jean Serra for their scientific interaction with Barrera and Hashimoto, Professor Gerald J. F. Banon for pioneering Mathematical Morphology in Brazil and inspiring young researchers, Professor Roberto Lotufo for introducing Khoros/Cantata programming language and collaborating with our group for many years, Professor Edward R. Dougherty for his inspiring work on the statistical design of image operators and the fruitful collaboration with our group for so long. In particular, Professor Banon advised Barrera’s Doctorate and collaborated with IME’s group for many years at the beginning of our group. The authors also acknowledge all their former collaborators and former students for their contributions to develop methods and tools for the automatic programming of image operators. The authors acknowledge CNPq, FAPESP, and Olivetti do Brasil for the financial support that allowed the development of this research. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Funding

This study was supported by FAPESP (Grants 2019/21619-5, 2017/25835-9, 2015/22308-2, 2013/07467-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina S. T. Hirata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Yoshiharu Kohayakawa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera, J., Hashimoto, R.F., Hirata, N.S.T. et al. From Mathematical Morphology to machine learning of image operators. São Paulo J. Math. Sci. 16, 616–657 (2022). https://doi.org/10.1007/s40863-022-00303-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-022-00303-1

Keywords

Mathematics Subject Classification

Navigation