Skip to main content
Log in

Vibrotactile Stimulation in the Upper-Arm for Restoring Individual Finger Sensations in Hand Prosthesis

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The implementation of a sensory feedback system is particularly important in upper limb prosthesis to improve closed-loop control and prosthesis acceptance. Restoring the touch sensations of individual fingers becomes critical in increasing the sense of embodiment of the artificial limb. Vibrotactile feedback appears as a feasible route to provide useful sensory feedback to prosthesis users. Most studies evaluate the stimulation of the forearm as a potential location of the sensory feedback system. However, it is also necessary to evaluate the stimulation of the upper arm to provide feedback to above-elbow amputees. In this work, the ability of 30 able-bodied subjects to discriminate vibrotactile stimulations in the biceps was evaluated. Particularly, experiments were conducted to evaluate their ability to discriminate different stimulation sites and different stimulation patterns. Stimulation sites were associated to tactile feedback from individual fingers of a virtual hand whereas simulation patterns were associated to potential grasping configurations of the hand. To compare the results, the same experiments were performed on the forearm. The results showed that subjects discriminated finger’s tactile feedback with about 94% average accuracy and grasping pattern feedback with about 85% average accuracy. The special acuity observed in the upper arm suggests that vibrotactile stimulation may also provide suitable feedback for restoring tactile sensation in above elbow amputees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Micera, S., Carpaneto, J., & Raspopovic, S. (2010). Control of hand prostheses using peripheral information. IEEE Reviews in Biomedical Engineering, 3, 48–68. https://doi.org/10.1109/RBME.2010.2085429.

    Article  Google Scholar 

  2. Peerdeman, B., Boere, D., Witteveen, H., in ’t Veld, R. H., Hermens, H., Stramigioli, S., et al. (2011). Myoelectric forearm prostheses: State of the art from a user-centered perspective. Journal of Rehabilitation Research and Development, 48(6), 719–737.

    Article  Google Scholar 

  3. Pylatiuk, C., Schulz, S., & Döderlein, L. (2007). Results of an internet survey of myoelectric prosthetic hand users. Prosthetics and Orthotics International, 31(4), 362–370.

    Article  Google Scholar 

  4. Lundborg, G., & Rosén, B. (2001). Sensory substitution in prosthetics. Hand clinics, 17(3), 481–488, ix–x.

  5. Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345–359. https://doi.org/10.1038/nrn2621.

    Article  Google Scholar 

  6. Antfolk, C., D’Alonzo, M., Rosén, B., Lundborg, G., Sebelius, F., & Cipriani, C. (2013). Sensory feedback in upper limb prosthetics. Expert Review of Medical Devices, 10(1), 45–54. https://doi.org/10.1586/erd.12.68.

    Article  Google Scholar 

  7. Li, K., Fang, Y., Zhou, Y., & Liu, H. (2017). Non-invasive stimulation-based tactile sensation for upper-extremity prosthesis: A review. IEEE Sensors Journal, 17(9), 2625–2635. https://doi.org/10.1109/JSEN.2017.2674965.

    Article  Google Scholar 

  8. Tyler, D. J. (2016). Creating a prosthetic hand that can feel. IEEE Spectrum, 53(5 (INT)), 24–29.

    Google Scholar 

  9. Ortiz-Catalan, M., Håkansson, B., & Brånemark, R. (2014). An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Science Translational Medicine, 6(257), 257re6–257re6. https://doi.org/10.1126/scitranslmed.3008933.

    Article  Google Scholar 

  10. Raspopovic, S., Capogrosso, M., Petrini, F. M., Bonizzato, M., Rigosa, J., Di Pino, G., et al. (2014). Restoring natural sensory feedback in real-time bidirectional hand prostheses. Science Translational Medicine, 6(222), 222ra19–222ra19. https://doi.org/10.1126/scitranslmed.3006820.

    Article  Google Scholar 

  11. Schiefer, M., Tan, D., Sidek, S. M., & Tyler, D. J. (2016). Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. Journal of Neural Engineering, 13(1), 016001. https://doi.org/10.1088/1741-2560/13/1/016001.

    Article  Google Scholar 

  12. Dosen, S., Markovic, M., Strbac, M., Belic, M., Kojic, V., Bijelic, G., et al. (2017). Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(3), 183–195. https://doi.org/10.1109/TNSRE.2016.2550864.

    Article  Google Scholar 

  13. Kim, K., Colgate, J. E., Santos-Munne, J. J., Makhlin, A., & Peshkin, M. A. (2010). On the design of miniature haptic devices for upper extremity prosthetics. IEEE/ASME Transactions on Mechatronics, 15(1), 27–39. https://doi.org/10.1109/TMECH.2009.2013944.

    Article  Google Scholar 

  14. Antfolk, C., Balkenius, C., Lundborg, G., Rosén, B., & Sebelius, F. (2010). A tactile display system for hand prostheses to discriminate pressure and individual finger localization. Journal of Medical and Biological Engineering, 30(6), 355–360.

    Article  Google Scholar 

  15. Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P., & Tompkins, W. J. (1991). Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering, 38(1), 1–16. https://doi.org/10.1109/10.68204.

    Article  Google Scholar 

  16. Liu, W., & Tang, H. (2005). An initial study on lip perception of electrotactile array stimulation. Journal of Rehabilitation Research and Development, 42(5), 705–713. https://doi.org/10.1682/JRRD.2005.02.0051.

    Article  Google Scholar 

  17. Krueger, E., Da, C., Scheeren, E. M., & Nohama, P. (2014). Electrical and mechanical technologies in sensory system feedback and control: Cybernetics in physical rehabilitation. Journal of Control, Automation and Electrical Systems, 25(4), 413–427. https://doi.org/10.1007/s40313-014-0121-y.

    Article  Google Scholar 

  18. Li, C.-M., Lee, H.-Y., Hsieh, S.-H., Wang, T.-G., Wang, H.-P., & Chen, J.-J. J. (2016). Development of innovative feedback device for swallowing therapy. Journal of Medical and Biological Engineering, 36(3), 357–368. https://doi.org/10.1007/s40846-016-0146-8.

    Article  Google Scholar 

  19. Xu, H., Zhang, D., Huegel, J. C., Xu, W., & Zhu, X. (2016). Effects of different tactile feedback on myoelectric closed-loop control for grasping based on electrotactile stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(8), 827–836. https://doi.org/10.1109/TNSRE.2015.2478153.

    Article  Google Scholar 

  20. Patel, G. K., Dosen, S., Castellini, C., & Farina, D. (2016). Multichannel electrotactile feedback for simultaneous and proportional myoelectric control. Journal of Neural Engineering, 13(5), 056015. https://doi.org/10.1088/1741-2560/13/5/056015.

    Article  Google Scholar 

  21. Schweisfurth, M. A., Markovic, M., Dosen, S., Teich, F., Graimann, B., & Farina, D. (2016). Electrotactile EMG feedback improves the control of prosthesis grasping force. Journal of Neural Engineering, 13(5), 056010. https://doi.org/10.1088/1741-2560/13/5/056010.

    Article  Google Scholar 

  22. Hartmann, C., Došen, S., Amsuess, S., & Farina, D. (2015). Closed-loop control of myoelectric prostheses with electrotactile feedback: Influence of stimulation artifact and blanking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(5), 807–816. https://doi.org/10.1109/TNSRE.2014.2357175.

    Article  Google Scholar 

  23. Choi, S., & Kuchenbecker, K. J. (2013). Vibrotactile display: Perception, technology, and applications. Proceedings of the IEEE, 101(9), 2093–2104. https://doi.org/10.1109/JPROC.2012.2221071.

    Article  Google Scholar 

  24. D’Alonzo, M., Cipriani, C., & Carrozza, M. C. (2011). Vibrotactile sensory substitution in multi-fingered hand prostheses: Evaluation studies. In 2011 IEEE international conference on rehabilitation robotics (ICORR) (pp. 1–6). https://doi.org/10.1109/icorr.2011.5975477.

  25. Pylatiuk, C., Kargov, A., & Schulz, S. (2006). Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. Journal of Prosthetics and Orthotics, 18(2), 57–61. https://doi.org/10.1097/00008526-200604000-00007.

    Article  Google Scholar 

  26. Cipriani, C., D’Alonzo, M., & Carrozza, M. C. (2012). A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Transactions on Biomedical Engineering, 59(2), 400–408. https://doi.org/10.1109/TBME.2011.2173342.

    Article  Google Scholar 

  27. Witteveen, H. J., Rietman, H. S., & Veltink, P. H. (2015). Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthetics and Orthotics International, 39(3), 204–212. https://doi.org/10.1177/0309364614522260.

    Article  Google Scholar 

  28. Walker, J. M., Blank, A. A., Shewokis, P. A., & O’Malley, M. K. (2015). Tactile feedback of object slip facilitates virtual object manipulation. IEEE Transactions on Haptics, 8(4), 454–466. https://doi.org/10.1109/TOH.2015.2420096.

    Article  Google Scholar 

  29. Witteveen, H. J. B., Luft, F., Rietman, J. S., & Veltink, P. H. (2014). Stiffness feedback for myoelectric forearm prostheses using vibrotactile stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(1), 53–61. https://doi.org/10.1109/TNSRE.2013.2267394.

    Article  Google Scholar 

  30. Antfolk, C., D’Alonzo, M., Controzzi, M., Lundborg, G., Rosen, B., Sebelius, F., et al. (2013). Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(1), 112–120. https://doi.org/10.1109/TNSRE.2012.2217989.

    Article  Google Scholar 

  31. Stepp, C. E., & Matsuoka, Y. (2012). Vibrotactile sensory substitution for object manipulation: Amplitude versus pulse train frequency modulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 31–37. https://doi.org/10.1109/TNSRE.2011.2170856.

    Article  Google Scholar 

  32. Stepp, C. E., An, Q., & Matsuoka, Y. (2012). Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS ONE, 7(2), e32743.

    Article  Google Scholar 

  33. Rombokas, E., Stepp, C. E., Chang, C., Malhotra, M., & Matsuoka, Y. (2013). Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Transactions on Biomedical Engineering, 60(8), 2226–2232. https://doi.org/10.1109/TBME.2013.2252174.

    Article  Google Scholar 

  34. Witteveen, H. J. B., Droog, E. A., Rietman, J. S., & Veltink, P. H. (2012). Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Transactions on Biomedical Engineering, 59(8), 2219–2226. https://doi.org/10.1109/TBME.2012.2200678.

    Article  Google Scholar 

  35. Farrell, T. R., & Weir, R. F. (2007). The optimal controller delay for myoelectric prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(1), 111–118. https://doi.org/10.1109/TNSRE.2007.891391.

    Article  Google Scholar 

  36. Cholewiak, R. W., & Collins, A. A. (2003). Vibrotactile localization on the arm: Effects of place, space, and age. Perception & Psychophysics, 65(7), 1058–1077. https://doi.org/10.3758/BF03194834.

    Article  Google Scholar 

  37. Goldstein, E. B. (2009). The Cutaneous Sense. In Sensation and perception (8th ed., pp. 329–352). Wadsworth.

  38. Antfolk, C., Cipriani, C., Carrozza, M. C., Balkenius, C., Björkman, A., Lundborg, G., et al. (2012). Transfer of tactile input from an artificial hand to the forearm: Experiments in amputees and able-bodied volunteers. Disability and Rehabilitation: Assistive Technology, 8(3), 249–254. https://doi.org/10.3109/17483107.2012.713435.

    Google Scholar 

  39. Grüsser, S. M., Winter, C., Schaefer, M., Fritzsche, K., Benhidjeb, T., Tunn, P.-U., et al. (2001). Perceptual phenomena after unilateral arm amputation: A pre-post-surgical comparison. Neuroscience Letters, 302(1), 13–16. https://doi.org/10.1016/S0304-3940(01)01606-8.

    Article  Google Scholar 

  40. Chai, G., Zhang, D., & Zhu, X. (2017). Developing non-somatotopic phantom finger sensation to comparable levels of somatotopic sensation through user training with electrotactile stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(5), 469–480. https://doi.org/10.1109/TNSRE.2016.2580905.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a PID research grant from the Ministry of Industry, Trade, Mining and Technological Development of the province of Córdoba, Argentina. It was also partially supported by a PPI 2016–2018 research Grant from the Science and Technology Secretary, National University of Rio Cuarto. The first and third authors are supported by National Scientific and Technical Research Council (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Fontana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontana, J.M., O’Brien, R., Laciar, E. et al. Vibrotactile Stimulation in the Upper-Arm for Restoring Individual Finger Sensations in Hand Prosthesis. J. Med. Biol. Eng. 38, 782–789 (2018). https://doi.org/10.1007/s40846-018-0374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-018-0374-1

Keywords

Navigation