Skip to main content
Log in

Regularity Criteria for the 3D Dissipative System Modeling Electro-Hydrodynamics

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we study the three-dimensional dissipative fluid-dynamical model, which is a strongly coupled nonlinear nonlocal system characterized by the Navier–Stokes/Poisson–Nernst–Planck system. It is proved that the local smooth solution can be continued beyond the time T provided that the vorticity \(\omega \) satisfies

$$\begin{aligned} \int _{0}^{T}\frac{\Vert \omega (\cdot ,t)\Vert _{\dot{B}^{-\alpha }_{\infty ,\infty }}^{\frac{2}{2-\alpha }}}{1+\ln \left( e+\Vert \omega (\cdot ,t)\Vert _{\dot{B}^{-\alpha }_{\infty ,\infty }}\right) }\mathrm{d}t<\infty \quad \text {for} \,\, 0<\alpha <2. \end{aligned}$$

Moreover, two regularity criteria for the marginal cases \(\alpha =0\) and \(\alpha =2\) are also established, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  2. Biler, P., Dolbeault, J.: Long time behavior of solutions to Nernst–Planck and Debye–Hückel drift–diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23, 1189–1209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheskidov, A., Shvydkoy, R.: The regularity of weak solutions of the 3D Navier–Stokes equations in \(B^{-1}_{\infty, \infty }\). Arch. Rational Mech. Anal. 195, 159–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte, II: Das Grenzgesetz für die elektrische Leitfähigkeit. Phys. Z. 24, 305–325 (1923)

    MATH  Google Scholar 

  7. Escauriaza, L., Seregin, G., Šverák, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk. 58, 3–44 (2003)

    Article  MathSciNet  Google Scholar 

  8. Deng, C., Zhao, J., Cui, S.: Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices. J. Math. Anal. Appl. 377, 392–405 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, J., Fukumoto, Y., Zhou, Y.: Logarithmically improved regularity criteria for the generalized Navier–Stokes and related equations. Kinet. Relat. Models 6(3), 545–556 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, J., Gao, H.: Uniqueness of weak solutions to a nonlinear hyperbolic system in electrohydrodynamics. Nonlinear Anal. 70, 2382–2386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, J., Jiang, S., Nakamura, G., Zhou, Y.: Logarithmically improved regularity criteria for the Navier–Stokes and MHD equations. J. Math. Fluid Mech. 13(4), 557–571 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, J., Li, F., Nakamura, G.: Regularity criteria for a mathematical model for the deformation of electrolyte droplets. Appl. Math. Lett. 26, 494–499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, J., Nakamura, G., Zhou, Y.: On the Cauchy problem for a model of electro-kinetic fluid. Appl. Math. Lett. 25, 33–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gogny, D., Lions, P.-L.: Sur les états d’équilibre pour les densités électroniques dans les plasmas. RAIRO Modél. Math. Anal. Numér. 23, 137–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jerome, J.W.: Analytical approaches to charge transport in a moving medium. Trans. Theor. Stat. Phys. 31, 333–366 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jerome, J.W.: The steady boundary value problem for charged incompressible fluids: PNP/Navier–Stokes systems. Nonlinear Anal. 74, 7486–7498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerome, J.W., Sacco, R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: initial–boundary-value problem. Nonlinear Anal. 71, 2487–2497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozono, H., Taniuchi, Y.: Bilinear estimates in \(BMO\) and the Navier–Stokes equations. Math. Z. 235, 173–194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rubinstein, I.: Electro-Diffusion of Ions, SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  23. Ryham, R.J.: Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics. arXiv:0910.4973v1

  24. Schmuck, M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19(6), 993–1015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Berlin (1983)

    Google Scholar 

  26. Yuan, B., Zhang, B.: Blow-up criterion of strong solutions to the Navier–Stokes equations in Besov spaces with negative indices. J. Differ. Equ. 242, 1–10 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z.: A remark on the blow-up criterion for the 3D Hall–MHD system in Besov spaces. J. Math. Anal. Appl. 441(2), 692–701 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Z., Yang, X.: Navier–Stokes equations with vorticity in Besov spaces of negative regular indices. J. Math. Anal. Appl. 440, 415–419 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z., Yin, Z.: Global well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in dimension two. Appl. Math. Lett. 40, 102–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, J., Bai, M.: Blow-up criteria for the three dimensional nonlinear dissipative system modeling electro-hydrodynamics. Nonlinear Anal. Real World Appl. 31, 210–226 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhao, J., Liu, Q.: Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces. J. Differ. Equ. 263, 1293–1322 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, J., Zhang, T., Liu, Q.: Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete Contin. Dyn. Syst. Ser. A 35(1), 555–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, Y., Fan, J.: Logarithmically improved regularity criteria for the 3D viscous MHD equations. Forum Math. 24(4), 691–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, Y., Gala, S.: Logarithmically improved regularity criteria for the Navier–Stokes equations in multiplier spaces. J. Math. Anal. Appl. 356(2), 498–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is partially supported by the National Natural Science Foundation of China (11501453), the Fundamental Research Funds for the Central Universities (2014YB031) and the Fundamental Research Project of Natural Science Foundation of Shaanxi Province–Young Talent Project (2015JQ1004). The author is glad to acknowledge his gratefulness to Dr. Jingjing Zhang for profitable communication on the regularity criterion (1.6) in Theorem 1.2 of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Zhao.

Additional information

Communicated by Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J. Regularity Criteria for the 3D Dissipative System Modeling Electro-Hydrodynamics. Bull. Malays. Math. Sci. Soc. 42, 1101–1117 (2019). https://doi.org/10.1007/s40840-017-0537-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0537-1

Keywords

Mathematics Subject Classification

Navigation