Skip to main content
Log in

Effect of Mass Ratio and Milling on Compressive Strength and Corrosion Resistance of Blast-Furnace Slag/Fly Ash Geopolymer Activated by Solid Alkali Activator

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Fly ash and granulated blast-furnace slag can be considered "multifunctional waste." This study is focused on properties of a non-cement binder prepared from slag and fly ash activated by solid alkali activator. Fly ash was milled (2.5, 5.0, and 7.5 min) in order to increase its reactivity, and particle size distribution, specific surface area, and grain morphology were determined for all milled FA samples. Two GBFS + FA mixtures (70:30 and 85:15 w/w) were studied. Prepared mixtures were activated by solid alkali activator (Na2SiO3). Optimal weight ratios were calculated for CaO, SiO2, and Al2O3 components. Properties of the mixtures were studied in dependence on the GBFS:FA mass ratio and FA milling time (0–7.5 min). After 2 and 28 days of hydration, compressive strength of all mixtures exceeded 20 and 60 MPa, respectively. The 85:15 ratio led to generally higher compressive strength 108.3 MPa was reached after 90 days using FA milled for 7.5 min. Corrosion resistance was tested by exposing mixtures to distilled water, 0.5% HCl, and 3% Na2SO4 for 65 days, and evaluated by measuring changes in CS. Also the corrosion resistance was found higher (Na2SO4) than and comparable (HCl, water) to the 70:30 ratio. This study aims to show that GBFS + FA mixtures (70:30 and 85:15 w/w) activated by solid Na2SiO3 can achieve high CS and good corrosion resistance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AA:

Alkali activator

AAM:

Alkali-activated material

AAS:

Alkali-activated slag

BD:

Bulk density

BET:

Brunauer–Emmett–Teller

BFS:

Blast-furnace slag

CS:

Compressive strength

DoH:

Days of hydration

FA:

Fly ash

GBFS:

Granulated blast-furnace slag

GPC:

Geopolymer Portland cement

PC:

Portland cement

SAA:

Solid alkali activator

SEM:

Scanning electron microscopy

SSA:

Specific surface area

XRFS:

X-ray fluorescence spectroscopy

XRPD:

X-ray powder diffraction

References

  1. Hassan A, Arif M, Shariq M (2019) Use of geopolymer concrete for a cleaner and sustainable environment—a review of mechanical properties and microstructure. J Clean Prod 223:704–728. https://doi.org/10.1016/j.jclepro.2019.03.051

    Article  Google Scholar 

  2. Yang B, Jang JG (2020) Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator. Constr Build Mater 257(2):119552. https://doi.org/10.1016/j.conbuildmat.2020.119552

    Article  CAS  Google Scholar 

  3. Luukkonen T, Abdollahnejad Z, Yliniemi Y, Kinnunen P, Illikainen M (2014) One-part alkali-activated materials: a review. Cem Concr Res 103:21–34. https://doi.org/10.1016/j.cemconres.2017.10.001

    Article  CAS  Google Scholar 

  4. Ismail I, Bernal AS, Provis JL, Nicolas SR, Hamdan S, Van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006

    Article  CAS  Google Scholar 

  5. Davidovits J (2020) Geopolymer chemistry and applications, 5th edn. Institut Géopolymère, Saint-Quentin

    Google Scholar 

  6. Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M (2018) Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. J Clean Prod 187:171–179. https://doi.org/10.1016/j.jclepro.2018.03.202

    Article  CAS  Google Scholar 

  7. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater 22(7):1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015

    Article  Google Scholar 

  8. Hajimohammadi A, van Deventer JSJ (2017) Characterisation of one-part geopolymer binders made from fly ash. Waste Biomass Valoriz 8:225–233. https://doi.org/10.1007/s12649-016-9582-5

    Article  CAS  Google Scholar 

  9. Palomo A, Krivenko PV, Garcia-Lodeiro L, Kavalerova E, Maltseva O, Fernández-Jiménez A (2014) A review on alkaline activation: new analytical perspectives. Mater Construct. https://doi.org/10.3989/mc.2014.00314

    Article  Google Scholar 

  10. Wang A, Zheng Y, Zhang Z, Liu K, Li Y, Shi L, Sun D (2020) The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review. Engineering 6(6):695–706. https://doi.org/10.1016/j.eng.2019.08.019

    Article  CAS  Google Scholar 

  11. Vlček J, Švrčinová R, Burda J, Topinková M, Klárová M, Ovčačíková H, Jančar D, Velička M (2016) Hydraulic properties of ladle slag. Metalurgija 55(3):399–402

    Google Scholar 

  12. Komljenović M, Baščarević Z, Bradić V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181(1–3):35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064

    Article  CAS  Google Scholar 

  13. ASTM C618-19, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA, (2019)

  14. Vargas AS, Molin DC, Vilelac ACF, da Silva FJ, Pavão B, Veit H (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem Concr Compos 33(6):653–660. https://doi.org/10.1016/j.cemconcomp.2011.03.006

    Article  CAS  Google Scholar 

  15. Komljenović M, Baščarević Z, Marjanović N, Miladinović Z, Petrović R (2015) The influence of fly ash characteristics and reaction conditions on strength and structure of geopolymers. Constr Build Mater 94:361–370. https://doi.org/10.1016/j.conbuildmat.2015.07.014

    Article  CAS  Google Scholar 

  16. Kumar R, Kumar S, Mehrotra SP (2007) Towards sustainable solutions for fly ash through mechanical activation. Resour Conserv Recycl 52:157–159. https://doi.org/10.1016/j.resconrec.2007.06.007

    Article  Google Scholar 

  17. Chu YS, Davaabal B, Kim DS, Seo SK, Kim Y, Ruescher C, Temuujin J (2019) Reactivity of fly ashes milled in different milling devices. Rev Adv Mater Sci 58:179–188. https://doi.org/10.1515/rams-2019-0028

    Article  Google Scholar 

  18. Ononiwu NH, Ozoegwu CG, Akinribide OJ, Akinlabi ET (2021) Effect of particle size on the microstructure and distribution of fly ash for metal matrix composite applications. Mater Today Proc 44(1):1118–1123. https://doi.org/10.1016/j.matpr.2020.11.227

    Article  CAS  Google Scholar 

  19. Felekoğlu B, Türkel S, Kalyoncu H (2009) Optimization of fineness to maximize the strength activity of high-calcium ground fly ash—Portland cement composites. Constr Build Mater 23:2053–2061. https://doi.org/10.1016/j.conbuildmat.2008.08.024

    Article  Google Scholar 

  20. Petrakis E, Karmali V, Bartzas G, Komnitsas K (2019) Grinding kinetics of slag and effect of final particle size on the compressive strength of alkali activated materials. Minerals 9(11):714. https://doi.org/10.3390/min9110714

    Article  CAS  Google Scholar 

  21. Zhang J, Shi C, Zhang Z, Ou Z (2017) Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr Build Mater 152:598–613. https://doi.org/10.1016/j.conbuildmat.2017.07.027

    Article  CAS  Google Scholar 

  22. Chaparro WA, Ruiz JHB, de Jesús Torres Gómez R (2012) Corrosion of reinforcing bars embedded in alkali-activated slag concrete subjected to chloride attack. Mater Res 15(1):57–62. https://doi.org/10.1590/S1516-14392011005000096

    Article  CAS  Google Scholar 

  23. Fernández-Jiménez A, Palomo A (2003) Characterisation of fly ashes. Potential React Alkaline Cem Fuel 82(18):2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7

    Article  CAS  Google Scholar 

  24. Hossain MM, Karim MR, Hossain MK, Islam MN, Zain MFM (2015) Durability of mortar and concrete containing alkali-activated binder with pozzolans: a review. Constr Build Mater 93:95–109. https://doi.org/10.1016/j.conbuildmat.2015.05.094

    Article  Google Scholar 

  25. Chi M, Huang R (2013) Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater 40:291–298. https://doi.org/10.1016/j.conbuildmat.2012.11.003

    Article  Google Scholar 

  26. Rashad AM (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des 53:1005–1025. https://doi.org/10.1016/j.matdes.2013.07.074

    Article  CAS  Google Scholar 

  27. European Norm EN 1927-5: Monolithic (unshaped) refractory products—Part 5: preparation and treatment of the test pieces, Czech Office for Standards, Metrology and Testing, Czech Republic, 2013

  28. European Norm EN 196-6: Methods of testing cement—Part 6: determination of fineness, Czech Office for Standards, Metrology and Testing, Czech Republic, 2019

  29. European Norm EN 196-1: Methods of testing cement. Part 1: determination of strength, Czech Office for Standards, Metrology and Testing, Czech Republic, 2016

  30. European Norm EN 15167-1: Ground granulated blast furnace slag for use in concrete, mortar and grout-Part 1: definitions, specifications and conformity criteria, Czech Office for Standards, Metrology and Testing, Czech Republic, 2006

  31. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x

    Article  CAS  Google Scholar 

  32. Shi C, Roy D, Krivenko PV (2003) Alkali-activated cements and concretes, 1st edn. CRC Press, London

    Book  Google Scholar 

  33. Temuujin J, Williams RP, Van Riessen A (2009) Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J Mater Process Technol 209(12–13):5276–5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016

    Article  CAS  Google Scholar 

  34. Krivenko P (2017) Why alkaline activation—60 years of the theory and practice of alkali-activated materials. J Ceram Sci Technol 8(3):323–334. https://doi.org/10.4416/JCST2017-00042

    Article  Google Scholar 

  35. White SC, Case ED (1990) Characterization of fly ash from coal-fired power plants. J Mater Sci 25:5215–5219. https://doi.org/10.1007/BF00580153

    Article  CAS  Google Scholar 

  36. Paul KT, Satpathy SK, Manna I, Chakraborty KK, Nando GB (2007) Preparation and characterization of nanostructured materials from fly ash: a waste from thermal power stations, by high energy ball milling. Nanoscale Res Lett 2:397–404. https://doi.org/10.1007/s11671-007-9074-4

    Article  CAS  Google Scholar 

  37. Chindaprasirt P, Jaturapitakkul C, Sinsiri T (2005) Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem Concr Compos 27:425–428. https://doi.org/10.1016/j.cemconcomp.2004.07.003

    Article  CAS  Google Scholar 

  38. Bapat JD (2012) Mineral admixtures in cement and concrete, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  39. Fernández-Jiménez A, Garcia-Lodeiro I, Maltseva O, Palomo A (2019) Mechanical-chemical activation of coal fly ashes: an effective way for recycling and make cementitious materials. Front Mater 6:51. https://doi.org/10.3389/fmats.2019.00051

    Article  Google Scholar 

  40. Hitesh, Wattal R, Surabhi L (2021) Development and characterization of coal fly ash through low-energy ball milling. Mater Today Proc 47(11):2970–2975. https://doi.org/10.1016/j.matpr.2021.05.204

    Article  CAS  Google Scholar 

  41. Kanti P, Sharma KV, Ramachandra CG, Minea AA (2020) Effect of ball milling on the thermal conductivity and viscosity of Indian coal fly ash nanofluid. Heat Transf 49(8):4475–4490. https://doi.org/10.1002/htj.21836

    Article  Google Scholar 

  42. Fernández-Jiménez A, Palomo A, Criado M (2005) Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res 35(6):1204–1209. https://doi.org/10.3989/mc.2006.v56.i281.92

    Article  Google Scholar 

  43. Huseien GF, Mohd Sam AR, Alyousef R (2020) Texture, morphology and strength performance of self-compacting alkali-activated concrete: role of fly ash as GBFS replacement. Constr Build Mater 270:121368. https://doi.org/10.1016/j.conbuildmat.2020.121368

    Article  CAS  Google Scholar 

  44. Huseien GF, Mirza J, Ismail M, Hussin MW (2016) Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Constr Build Mater 125:1229–1240. https://doi.org/10.1016/j.conbuildmat.2016.08.153

    Article  CAS  Google Scholar 

  45. Huseien GF, Tahir MM, Mirza J, Ismail M, Shah KW, Asaad MA (2018) Effects of POFA replaced with FA on durability properties of GBFS included alkali activated mortars. Constr Build Mater 175:174–186. https://doi.org/10.1016/j.conbuildmat.2018.04.166

    Article  CAS  Google Scholar 

  46. Puligilla S, Mondal P (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res 43:70–80. https://doi.org/10.1016/j.cemconres.2012.10.004

    Article  CAS  Google Scholar 

  47. Kubba Z, Huseien GF, Sam ARM, Shah KW, Asaad MA, Ismail M, Tahir MM, Mirza J (2018) Impact of curing temperatures and alkaline activators on compressive strengthand porosity of ternary blended geopolymer mortars. Case Stud Constr Mater 9:e00205. https://doi.org/10.1016/j.cscm.2018.e00205

    Article  Google Scholar 

  48. Kumar S, Kumar R, Mehrotra SP (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 45(3):607–615. https://doi.org/10.1007/s10853-009-3934-5

    Article  CAS  Google Scholar 

  49. Hany E, Fouad N, Abdel-Wahab M, Sadek E (2020) Compressive strength of mortars incorporating alkali-activated materials as partial or full replacement of cement. Constr Build Mater 261:120518. https://doi.org/10.1016/j.conbuildmat.2020.120518

    Article  CAS  Google Scholar 

  50. Oderji SY, Chen B, Ahmad MR, Shah SFA (2009) Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: effect of slag and alkali activators. J Clean Prod 225:1–10. https://doi.org/10.1016/j.jclepro.2019.03.290

    Article  CAS  Google Scholar 

  51. Kumar S, Kumar R, Bandopadhyay A, Alex TC, Kumar BR, Das SK, Mehrotra SP (2008) Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem Concr Compos 30:679–685. https://doi.org/10.1016/j.cemconcomp.2008.05.005

    Article  CAS  Google Scholar 

  52. Alrefaei Y, Wang YS, Dai JG (2021) Effect of mixing method on the performance of alkali-activated fly ash/slag pastes along with polycarboxylate admixture. Cem Concr Compos 117:103917. https://doi.org/10.1016/j.cemconcomp.2020.103917

    Article  CAS  Google Scholar 

  53. Blanco F, Garcia MP, Ayla J, Mayoral G, Garcia MA (2006) The effect of mechanical and chemical activated fly ashes on mortar properties. Fuel 85:2018–2026. https://doi.org/10.1016/j.fuel.2006.03.031

    Article  CAS  Google Scholar 

  54. Guo X, Shi H, Dick WA (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos 32(2):142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003

    Article  CAS  Google Scholar 

  55. Yazdi MA, Liebscher M, Hempel S, Yang J, Mechtcherine V (2018) Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Constr Build Mater 191:330–341. https://doi.org/10.1016/j.conbuildmat.2018.10.037

    Article  CAS  Google Scholar 

  56. Pangdaeng S, Phoo-ngernkham T, Sata V, Chindaprasirt P (2014) Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater Des 53:269–274. https://doi.org/10.1016/j.matdes.2013.07.018

    Article  CAS  Google Scholar 

  57. Angulo-Ramírez DE, Valencia-Saavedra WG, Mejía de Gutiérrez R (2020) Alkali-activated concretes based on fly ash and blast furnace slag: Compressive strength, water absorption and chloride permeability. Ingeniería e Investigación 40(2):72–80. https://doi.org/10.15446/ing.investig.v40n2.83893

    Article  CAS  Google Scholar 

  58. Li H, Chen Y, Cao Y, Liu G, Li B (2015) Comparative study on the characteristics of ball-milled coal fly ash. J Therm Anal Calorim 124:839–846. https://doi.org/10.1007/s10973-015-5160-5

    Article  CAS  Google Scholar 

  59. Kumar S, Bandopadhyay A, Rajinikanth V, Alex TC, Kumar R (2004) Improved processing of blended cement through mechanical activation. J Mater Sci 39:3449–3452. https://doi.org/10.1023/B:JMSC.0000026948.85440.cc

    Article  CAS  Google Scholar 

  60. Puertas F, de Gutiérrez R, Fernández-Jiménez A, Delvasto S, Maldonado J (2002) Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater Constr 52(267):55–71. https://doi.org/10.3989/mc.2002.v52.i267.326

    Article  CAS  Google Scholar 

  61. Rodríguez E, Bernal S, de Gutiérrez RM, Puertas F (2008) Alternative concrete based on alkali-activated slag. Mater Constr 58(291):53–67. https://doi.org/10.3989/mc.2008.v58.i291.104

    Article  Google Scholar 

  62. Bakharev T, Sanjayana JG, Chengb YB (2002) Sulfate attack on alkali-activated slag concrete. Cem Concr Res 32:211–216. https://doi.org/10.1016/S0008-8846(01)00659-7

    Article  CAS  Google Scholar 

  63. Tang XY, Xiao J, Chen F (2006) Effect and research progress of acid deposition on concrete durability. Mater Rev 20(10):97–101. https://doi.org/10.1016/j.eng.2019.08.019

    Article  CAS  Google Scholar 

  64. Bernal SA, Rodriguez ED, de Gutierrez RM, Provis JL (2012) Performance of alkali-activated slag mortars exposed to acids. J Adv Cem Based Mater 1(3):138–151. https://doi.org/10.1080/21650373.2012.747235

    Article  CAS  Google Scholar 

  65. Wang KT, Du LQ, Lv XS, He Y, Cui XM (2017) Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technol 312:204–209. https://doi.org/10.1016/j.powtec.2017.02.036

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ministry of Education, Youth and Sports of the Czech Republic via the “Institute of Environmental Technology—Excellent Research” project [Grant Number CZ.02.1.01/0.0/0.0/16_019/0000853]; the “Research on the management of waste, materials and other products of metallurgy and related sectors” project [Grant Number CZ.02.1.01/0.0/0.0/17_049/0008426]; and the SGS projects [Grant Numbers SP2022/13 and SP2022/68].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Ovčačíková.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

The contributing editor for this article was João António Labrincha Batista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovčačíková, H., Tokarský, J., Maierová, P. et al. Effect of Mass Ratio and Milling on Compressive Strength and Corrosion Resistance of Blast-Furnace Slag/Fly Ash Geopolymer Activated by Solid Alkali Activator. J. Sustain. Metall. 8, 1961–1974 (2022). https://doi.org/10.1007/s40831-022-00618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00618-5

Keywords

Navigation