Skip to main content
Log in

Recovery of Samarium and Cobalt from Sm–Co Magnet Waste Using a Phosphonium Ionic Liquid Cyphos IL 104

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Due to outstanding thermal stability and corrosion resistance, samarium–cobalt alloy is being used in rare earth magnet. So, this permanent magnet waste can be a potential source for rare earth metal samarium and critical metal cobalt. Recovery and reuse of Sm, Co from Sm–Co magnet waste can reduce the burden on primary resources and environmental issues related to primary resources. In this work, a hydrometallurgical method for recovery of samarium and cobalt from Sm–Co magnet waste has been developed using an ionic liquid Cyphos IL 104. The optimum separation condition for cobalt and samarium has been determined by varying the concentration of HCl, NaCl, and mixture of HCl and NaCl in the leach liquor. The McCabe–Thiele plot is constructed using 0.075 mol/L Cyphos IL 104. Three counter-current stages at A:O ratio of 1:1.5 are needed for complete extraction of cobalt into the ionic liquid phase leaving samarium in the raffinate. Precipitation stripping of cobalt from the loaded organic is carried out using oxalic acid and the cobalt oxalate, thus formed, is calcined at 450 °C to form Co3O4. The raffinate obtained from the counter-current extraction contains 2.02 g/L Sm and 0.02 mg/L Co. Sm2O3 from raffinate is produced by precipitation of samarium with oxalic acid followed by calcination of samarium oxalate at 800 °C. Both the oxide products are confirmed by XRD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yi JH (2014) Development of samarium-cobalt rare earth permanent magnetic materials. Rare Met 33(6):633–640. https://doi.org/10.1007/s12598-014-0405-1

    Article  CAS  Google Scholar 

  2. Pragnell WM, Williams AJ, Evans HE (2009) The oxidation morphology of SmCo alloys. J Alloys Compd 487:69–75. https://doi.org/10.1016/j.jallcom.2009.07.115

    Article  CAS  Google Scholar 

  3. Yi JH, Peng YD (2004) Review of research on 2:17 type SmCo rare earth permanent magnets. Rare Met Mater Eng 33(4):337–342

    CAS  Google Scholar 

  4. Zakotnik M, Tudor CO (2015) Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materials. Waste Manage 44:48–54. https://doi.org/10.1016/j.wasman.2015.07.041

    Article  CAS  Google Scholar 

  5. Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang YX, Walton A, Buchert MJ (2013) Recycling of rare earths: a critical review. Clean Prod 51:1–22. https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  CAS  Google Scholar 

  6. Talijan NM (2006) Magnetic properties of sintered high energy Sm–Co and Nd–Fe–B magnets. Sci Sinter 38:73–82. https://doi.org/10.2298/SOS0601073T

    Article  CAS  Google Scholar 

  7. Eldosouky A, Škulj I (2018) Recycling of SmCo5 magnets by HD process. J Magn Magn Mater 454:249–253. https://doi.org/10.1016/j.jmmm.2018.01.064

    Article  CAS  Google Scholar 

  8. Sinha MK, Pramanik S, Kumari A, Sahu SK, Prasad LB, Jha MK, Yoo K, Pandey BD (2017) Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Sep Purif Technol 179:1–12. https://doi.org/10.1016/j.seppur.2017.01.056

    Article  CAS  Google Scholar 

  9. Kim JS, Kumar BN, Radhika S, Kantam ML, Reddy BR (2012) Studies on selection of solvent extractant system for the separation of trivalent Sm, Gd, Dy and Y from chloride solutions. Int J Miner Process 112–113:37–42. https://doi.org/10.1016/j.minpro.2012.07.004

    Article  CAS  Google Scholar 

  10. Torkaman R, MoosavianMA T-M, Safdari J (2013) Solvent extraction of samarium from aqueous nitrate solution by Cyanex301 and D2EHPA. Hydrometallurgy 137:101–107. https://doi.org/10.1016/j.hydromet.2013.04.005

    Article  CAS  Google Scholar 

  11. El-Nadi YA, El-Hefny NE, Daoud JA (2007) Extraction of lanthanum and samariumfrom nitrate medium by some commercial organophosphorus extractants. Solvent Extr Ion Exch 25:225–240. https://doi.org/10.1080/07366290601169485

    Article  CAS  Google Scholar 

  12. Hasegawa Y, Tamaki S, Yajima H, Hashimoto B, Yaita T (2011) Selective separation of samarium (III) by synergistic extraction with β-diketone and methylphenylphenanthroline carboxamide. Talanta 85:1543–1548. https://doi.org/10.1016/j.talanta.2011.06.041

    Article  CAS  Google Scholar 

  13. El-Hefny NE, El-Nadi YA, Daoud JA (2010) Equilibrium andmechanism of samarium extraction from chloride medium using sodium salt of Cyanex 272. Sep Purif Technol 75:310–315. https://doi.org/10.1016/j.seppur.2010.08.020

    Article  CAS  Google Scholar 

  14. Sahoo K, Nayak AK, Ghosh MK, Sarangi K (2018) Preparation of Sm2O3 and Co3O4 from SmCo magnet swarf by hydrometallurgical processing in chloride media. J Rare Earths 36:725–732. https://doi.org/10.1016/j.jre.2017.12.011

    Article  CAS  Google Scholar 

  15. Wang LY, Guo QJ, Lee MS (2019) Recent advances in metal extraction improvement: mixture systems consisting of ionic liquid and molecular extractant. Sep Purif Technol 210:292–303. https://doi.org/10.1016/j.seppur.2018.08.016

    Article  CAS  Google Scholar 

  16. Jensen MP, Neuefeind J, Beitz JV, Skanthakumar S, Soderholm L (2003) Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. J Am Chem Soc 125:15466–15473. https://doi.org/10.1021/ja037577b

    Article  CAS  Google Scholar 

  17. Flieger J, Michalewska MT, Blicharska E, Madejska A, Flieger W, Adamczuk A (2019) Extraction of cobalt (II) using ionic liquid-based bi-phase and three-phase systems without adding any chelating agents with new recycling procedure. Sep Purif Technol 209:984–989. https://doi.org/10.1016/j.seppur.2018.09.046

    Article  CAS  Google Scholar 

  18. Hoogerstraete TV, Wellens S, Verachtert K, Binnemans K (2013) Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem 15:919–927. https://doi.org/10.1039/C3GC40198G

    Article  Google Scholar 

  19. Foltova SS, Hoogerstraete TV, Banerjee D, Binnemans K (2018) Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep Purif Technol 210:209–218. https://doi.org/10.1016/j.seppur.2018.07.069

    Article  CAS  Google Scholar 

  20. Su X, Wang Y, Guo X, Dong Y, Gao Y, Sun X (2018) Recovery of Sm(III), Co(II) and Cu(II) from waste SmCo magnet by ionic liquid-based selective precipitation process. Waste Manage 78:992–1000. https://doi.org/10.1016/j.wasman.2018.07.004

    Article  CAS  Google Scholar 

  21. Fraser KJ, MacFarlane DR (2009) Phosphonium-based ionic liquids: an overview. Aust J Chem 62:309–321. https://doi.org/10.1071/CH08558

    Article  CAS  Google Scholar 

  22. Makanyire T, Sanchez-Segado S, Jha A (2016) Separation and recovery of critical metal ions using ionic liquids. Adv Manuf 4:33–46. https://doi.org/10.1007/s40436-015-0132-3

    Article  CAS  Google Scholar 

  23. Regel-Rosocka M (2009) Extractive removal of zinc(II) from chloride liquors with phosphonium ionic liquids/toluene mixtures as novel extractants. Sep Purif Technol 66:19–24. https://doi.org/10.1016/j.seppur.2008.12.002

    Article  CAS  Google Scholar 

  24. Rout A, Binnemans K (2014) Liquid–liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Dalton Trans 43:1862–1872. https://doi.org/10.1039/C3DT52285G

    Article  CAS  Google Scholar 

  25. Rybka P, Regel-Rosocka M (2012) Nickel(II) and Cobalt(II) extraction from chloride solutions with quaternary phosphonium salts. Sep Sci Technol 47(9):1296–1302. https://doi.org/10.1080/01496395.2012.672532

    Article  CAS  Google Scholar 

  26. Cieszynska A, Wiśniewski M (2012) Extractive recovery of palladium (II) from hydrochloric acid solutions with Cyphos IL 104. Hydrometallurgy 113–114:79–85. https://doi.org/10.1016/j.hydromet.2011.12.006

    Article  CAS  Google Scholar 

  27. Li Z, LiX RS, Binneman K (2018) Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using aliquat 336. Sep Purif Technol 201:318–326. https://doi.org/10.1016/j.seppur.2018.03.022

    Article  CAS  Google Scholar 

  28. Hoogerstraete TV, Binnemans K (2014) Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem 16:1594–1606. https://doi.org/10.1039/C3GC41577E

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the authorities of ‘S ‘O’ A [Deemed to be University]’ for their constant encouragement to accomplish the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharbala Devi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Brajendra Mishra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.B., Devi, N. & Sarangi, K. Recovery of Samarium and Cobalt from Sm–Co Magnet Waste Using a Phosphonium Ionic Liquid Cyphos IL 104. J. Sustain. Metall. 6, 410–418 (2020). https://doi.org/10.1007/s40831-020-00283-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00283-6

Keywords

Navigation