Skip to main content
Log in

Numerical Investigation of the Effect of Hydrogen Addition on Methane Flame Velocity and Pollutant Emissions Using Several Detailed Reaction Mechanisms

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

This research’s basic objective is the study of hydrogen addition effects on pollutant emissions like CO and CO2 and on the laminar velocity of a methane flame considering a detailed chemical kinetics. This numerical study was performed using the calculation code of the gas phase chemical kinetics ChemKin4.0. To do this, the internal combustion engine (ICE) model was used to simulate the CO and CO2 emissions and the flame speed calculation (FSC) model for calculating the laminar velocity for various detailed reaction mechanisms and under different mixing conditions of CH4 + H2 and at equivalence ratio values ranging from 0.6 to 1.4. Results were compared with various experimental data from the literature and very good concordance was observed for several of the detailed mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boumeddane, B.: Investigations numériques de l’auto-inflammation des mélanges méthane/air en mode HCCI. 19ème Congrès Français de Mécanique, Marseille, France, 24–28 August (2009)

  2. Guo, H., Smallwood, G.J., Liu, F., Ju, Y., Gülder, Ö.L.: The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc. Combust. Inst. 30, 303–311 (2005)

    Article  Google Scholar 

  3. De Simio, L., Gambino, M. & Iannaccone, S.: Use of hydrogen-methane mixtures for heavy duty engines. 12th World INGV conference and exhibition (2010)

  4. Navarro, E., Leo, T.J., Corral, R.: CO2 emissions from a spark ignition engine operating on natural gas-hydrogen blends (HCNG). Appl. Energy. 101, 112–120 (2013)

    Article  Google Scholar 

  5. Askari, M.H., Hoseinalipour, S.M., Jazayeri, S.A., Baghsheikhi, M.: Effect of hydrogen addition to natural gas on homogeneous charge compression ignition combustion engines performance and emissions using a thermodynamic simulation. Int. J. Automot. Eng. 1(2), 43–52 (2011)

  6. Wall, J.: Effect of hydrogen enriched hydrocarbon combustion on emissions and performance. 17th Annual Natural Philosophy Alliance Conference, Long Beach, CA. 6(2), 1–7 (2010)

  7. Nanthagopal, K., Subbarao, R., Elango, T., Baskar, P., Annamalai, K.: Hydrogen enriched compressed natural gas-a futuristic fuel for internal combustion engines. Therm. Sci. 15(4), 1145–1154 (2011)

    Article  Google Scholar 

  8. Wallner, T., Henry, K.N., Peters, R.W.: The effects of blending hydrogen with methane on engine operation, efficiency and emissions. SAE International. In: 2007-01-0474 (2007)

    Google Scholar 

  9. Sierens, R.: Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. J. Eng. Gas Turbines Power. 122(1), 135–140 (1999)

    Article  Google Scholar 

  10. Nabhani, N. & Sharifi, V.: Investigation on the combustion of hydrocarbon fuel enriched by hydrogen for a cleaner environment. International Conference on Chemical, Environ. Sci. Eng. (ICEEBS'2012, Pattaya, Thailand, July 28–29 (2012)

  11. De Sanctis, S., Grimolizzi, L., Ogliari, S. & Galler, D.: Hydrogen enrichment of natural gas: impact on the internal combustion engine emissions. Energy: Production, Distribution and Conservation, Milan, Italy (2006)

  12. Gersen, S.: Experimental study of the combustion properties of methane/hydrogen mixtures. PhD thesis, University of Groningen, The Netherlands (2007)

  13. Hernández-Pérez, F.E., Groth, C.P.T., Gülder, Ö.L.: Large-eddy simulation of lean hydrogen-methane turbulent premixed flames in the methane-dominated regime. Int. J. Hydrog. Energy. 39(13), 7147–7157 (2014)

    Article  Google Scholar 

  14. Hora, T.S., Agarwal, A.K.: Experimental study of the composition of hydrogen enriched compressed natural gas on engine performance, combustion and emission characteristics. Fuel. 160, 470–478 (2015)

    Article  Google Scholar 

  15. Kee, R.J., et al.: CHEMKIN Release 4.0.2. Reaction Design, San Diego (2005)

    Google Scholar 

  16. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eitneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissiauski, V.V., Qin, Z.: GRIMech 3.0. Retrieved from http://www.me.berkeley.edu/gri_mech

  17. Bourque, G., Healy, D., Curran, H.J., Zinner, C., Kalitan, D., de Vries, J., Aul, C. and Petersen, E.: Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons. Proc. ASME Turbo Expo. 31051–1066 (2008)

  18. Wiliams, F.A.: Chemical-kinetic mechanisms for combustion applications. San Diego mechanism web page, mechanical and aerospace engineering (combustion research), University of California at San Diego. Retrieved from http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html/.

  19. Huang, J., Hill, P.G., Bushe, W.K., Munshi, S.R.: Shock initiated ignition in homogeneous methane-hydrogen-air mixtures at high pressure. In. J. Chem. Kinet. 38(4), 221–233 (2006) Retrieved from http://kbspc.mech.ubc.ca/kinetics.html

    Article  Google Scholar 

  20. Heywood, J.B.: Internal combustion engines fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  21. Matynia, A., Molet, J., Roche, C., Idir, M., Persis, S.D., Pillier, L.: Measurement of OH concentration profiles by laser diagnostics and modeling in high-pressure counterflow premixed methane/air and biogas/air flames. Combust. Flame. 159, 3300e11 (2012)

  22. Wang, J.H., Huang, Z.H., Tang, C.L., Miao, H.Y., Wang, X.B.: Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int. J. Hydrog. Energy. 34, 1084e96 (2009)

    Google Scholar 

  23. Hu, E.J., Huang, Z.H., He, J.J., Jin, C., Zheng, J.J.: Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. Int. J. Hydrog. Energy. 34, 4876e88 (2009)

    Google Scholar 

  24. Burbano, H.J., Amell, A.A., Garcia, J.M.: Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners. Int. J. Hydrog. Energy. 33, 3410e5 (2008)

    Article  Google Scholar 

  25. Park, J.W., Oh, C.B.: Flame structure and global flame response to the equivalence ratios of interacting partially premixed methane and hydrogen flames. Int. J. Hydrog. Energy. 37(9), 7877–7888 (2012)

    Article  Google Scholar 

  26. Curran, H. J.: Detailed Chemical Kinetic Mechanisms for Combustion. Proceedings of the European Combustion Meeting (2009)

  27. Bovin P.: Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition, PhD thesis, Escuela Politécnica Superior, Leganés, Spain (2011)

  28. Huang, J.: Natural gas combustion under engine-relevant conditions. PhD Thesis, University of British Columbia, Canada (2006)

  29. Ying, Y., Liu, D.: Detailed influences of chemical effects of hydrogen as fuel additive on methane flame. Int. J. Hydrog. Energy. 40(9), 3777–3788 (2015)

    Article  Google Scholar 

  30. Ramaekers, W.J.S., Van Oijen, J.A., de Goey, L.P.H.: A priori testing of flamelet generated manifolds for turbulent partially premixed methane/air flames. Flow Turbul. Combust. 84(3), 439–458 (2010)

  31. Zsély, I.G.: Validation and optimization of detailed combustion mechanisms. COST Training School on the Analysis of Combustion Mechanisms, 4–7 July, Budapest, Hungary (2016)

  32. Li, O., Wang, T., Liu, Y., Wang, D.: Experimental study and kinetics modeling of partial oxidation reactions in heavily sooting laminar premixed methane flames. Chem. Eng. J. 207-208, 235–244 (2012)

    Article  Google Scholar 

  33. Olm, C., Zsély, I.G., Varga, T., Curran, H.J., Turányi, T.: Comparison of the performance of several recent syngas combustion mechanisms. Combust. Flame. 162(5), 1793–1812 (2015)

  34. Acikgoz, B., Celik, C.: An experimental study on performance and emission characteristics of methane-hydrogen fuelled gasoline engine. Int. J. Hydrog. Energy. 37(23), 18492–18497 (2012)

    Article  Google Scholar 

  35. Kahraman, N., Ceper, B., Akansu, S.O., Aydin, K.: Investigation of combustion characteristics and emissions in spark -ignition engine fuelled with natural gas-hydrogen blends. Int. J. Hydrog. Energy. 34(2), 1026–1034 (2009)

    Article  Google Scholar 

  36. Akansu, S.O., Kahraman, N., Ceper, B.: Experimental study on a spark ignition engine fueled by methane-hydrogen mixtures. Int. J. Hydrog. Energy. 32(17), 4279–4284 (2007)

    Article  Google Scholar 

  37. Tanoue, K., Kido, H., Hamatake, T., Shimada, F.: Improving the turbulent combustion performance of lean methane mixture by hydrogen addition. Seoul 2000 FISITA World Automotive Congress, Seoul, Korea June 12–15 (2000)

  38. Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q., Jiang, D.: Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame. 146(1-2), 302–311 (2006)

  39. Yu, C., Tang, C., Huang, Z.: Kinetic analysis of H2 addition effect on the laminar flame parameters of the C1-C4 n-alkane-air mixtures: from one step overall assumption to detailed reaction mechanism. Int. J. Hydrog. Energy. 40, 703–718 (2015)

    Article  Google Scholar 

  40. Law, C.K., Kwon, O.C.: Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation. Int. J. Hydrog. Energy. 29(8), 867–879 (2004)

    Article  Google Scholar 

  41. Ilbas, M., Crayford, A.P., Yilmaz, I., Bowen, P.J., Sired, N.: Laminar burning velocities of hydrogen–air and hydrogen–methane–air mixtures: an experimental study. Int. J. Hydrog. Energy. 31(12), 1768–1779 (2006)

    Article  Google Scholar 

  42. Dirrenberger, P., Le Gall, H., Bounaceur, R., Herbinet, O., Glaud, P.A., Konnov, A., Battin-Leclerc, F.: Measurement of laminar flame velocity for components of natural gas. Energy Fuels : Am. Chem. Soc. 25(9), 3875–3884 (2011)

  43. Haniff, M.S., Melvin, A., Smith, D.B., Williams, A.: The burning velocities of methane and SNG mixtures with air. J. Inst. Energ. 62(453), 229–236 (1989)

  44. Boushaki, T., Dhué, Y., Selle, L., Ferret, B., Poinsot, T.: Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: experimental and numerical analysis. Int. J. Hydrog. Energy. 37(11), 9412–9422 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Ennetta.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaya, M., Ennetta, R. & Said, R. Numerical Investigation of the Effect of Hydrogen Addition on Methane Flame Velocity and Pollutant Emissions Using Several Detailed Reaction Mechanisms. Emiss. Control Sci. Technol. 4, 321–329 (2018). https://doi.org/10.1007/s40825-018-0098-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-018-0098-2

Keywords

Navigation