Skip to main content
Log in

Recent Methodological Solutions to Identifying Scales of Effect in Multi-scale Modeling

  • Spatial Scale-Measurement, Influence, and Integration (A Martin and J Holland, Section Editors)
  • Published:
Current Landscape Ecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the characteristics of contemporary multi-scale studies (i.e., those that quantify ecological relationships over multiple spatial extents), outlines limitations associated with analyses typically used to model multi-scale ecological relationships, and highlights recent methodological progress overcoming these limits.

Recent Findings

The majority of recent studies investigating scales of effect in ecological relationships were conducted within a simplified model selection, information theoretic framework that suffers under the specters of collinearity, imperfect detection, and limited candidate scale space. The few studies that deviate from this framework offer greater flexibility in identifying or directly estimating relevant scales of effect by allowing predictors to have independent scales of effect, simultaneously evaluated, and explicitly consider the unique issue of collinearity in multi-scale studies, with extensions to hierarchical models that account for imperfect detection.

Summary

Accurate ecological inference requires that the scales of ecological processes, observations, and analyses align. Wider adoption of emerging analytical methods for identifying important scales of effect, though not traditional, and in some cases more computationally intensive, will broaden the scope for understanding the ecological factors operating on organisms at different scales. By estimating full models (i.e., not single-predictor models), which are not scale constrained (i.e., each predictor can have its own scale of effect), and that disentangle ecological processes from observational processes when relevant will provide a comprehensive base of estimates from which to explore underlying mechanisms governing scale dependence in ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wiens JA. Spatial scaling in ecology. Funct Ecol. 1989;3(4):385–97. https://doi.org/10.2307/2389612.

    Article  Google Scholar 

  2. Allen TFH, Starr TB. Hierarchy: perspectives for ecological complexity. Chicago: University of Chicago Press; 1982.

    Google Scholar 

  3. O'Neill RV. A hierarchical concept of ecosystems. Monographs in population biology, vol 23. Princeton, N.J.: Princeton University Press; 1986.

    Google Scholar 

  4. Keitt TH, Bjornstad ON, Dixon PM, Citron-Pousty S. Accounting for spatial pattern when modeling organism-environment interactions. Ecography. 2002;25(5):616–25. https://doi.org/10.1034/j.1600-0587.2002.250509.x.

    Article  Google Scholar 

  5. Hurlbert AH, Jetz W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. P Natl Acad Sci USA. 2007;104(33):13384–9. https://doi.org/10.1073/pnas.0704469104.

    Article  CAS  Google Scholar 

  6. Chalfoun AD, Martin TE. Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness. J Appl Ecol. 2007;44(5):983–92. https://doi.org/10.1111/j.1365-2664.2007.01352.x.

    Article  Google Scholar 

  7. Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP. Habitat selection at multiple scales. Ecoscience. 2009;16(2):238–47. https://doi.org/10.2980/16-2-3238.

    Article  Google Scholar 

  8. • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA. Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol. 2016;31(6):1161–75. https://doi.org/10.1007/s10980-016-0374-xReview article summarizing multi-scale and multi-level modeling efforts in habitat-selection studies from years leading up to the current review. The authors suggest an emerging frontier in multi-scale studies is in analytical advances.

  9. Gergel SE, Turner MG. Learning landscape ecology: a practical guide to concepts and techniques. New York: Springer; 2002.

    Book  Google Scholar 

  10. Mayer AL, Cameron GN. Consideration of grain and extent in landscape studies of terrestrial vertebrate ecology. Landscape Urban Plan. 2003;65(4):201–17. https://doi.org/10.1016/S0169-2046(03)00057-4.

    Article  Google Scholar 

  11. Johnson DH. The comparison of usage and availability measurements for evaluating resource preference. Ecology. 1980;61(1):65–71. https://doi.org/10.2307/1937156.

    Article  Google Scholar 

  12. Jackson HB, Fahrig, L What size is a biologically relevant landscape? Landsc. Ecol. 2012;27(7):929-941.

  13. Holland JD, Yang S. Multi-scale studies and the ecological neighborhood. Curr. Landsc. Ecol. Rep. 2016;1(4):135–45.

    Article  Google Scholar 

  14. Lechner AM, Rhodes JR. Recent progress on spatial and thematic resolution in landscape ecology. Curr. Landsc. Ecol. Rep. 2016;1(2):98–105.

    Article  Google Scholar 

  15. Winiarski, KJ, Peterman, WE, Whiteley, AR, McGarigal, K. Multiscale resistant kernel surfaces derived from inferred gene flow: An application with vernal pool breeding salamanders. Mol Ecol Resour. 2020; 20: 97–113. https://doi.org/10.1111/1755-0998.13089.

  16. Heisler LM, Poulin RG, Somers CM. Stop using dichotomous terms to reference observations of scale-dependent habitat selection. Landscape Ecol. 2017;32(8):1531–42. https://doi.org/10.1007/s10980-017-0543-6.

    Article  Google Scholar 

  17. Stuber EF, Gruber LF, Fontaine JJ. Predicting species-habitat relationships: does body size matter? Landscape Ecol. 2018;33(7):1049–60. https://doi.org/10.1007/s10980-018-0648-6.

    Article  Google Scholar 

  18. Thornton DH, Fletcher RJ. Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography. 2014;37(5):454–63.

    Google Scholar 

  19. Stuber EF, Fontaine JJ. How characteristic is the species characteristic selection scale? Global Ecol Biogeogr. 2019;28(12):1839–54. https://doi.org/10.1111/geb.12998.

    Article  Google Scholar 

  20. Martin AE. The spatial scale of a species’ response to the landscape context depends on which biological response you measure. Curr Landsc Ecol Rep. 2018;3(1):23–33.

    Article  Google Scholar 

  21. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17(1):43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.

    Article  Google Scholar 

  22. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species' distributions from occurrence data. Ecography. 2006;29(2):129–51. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

    Article  Google Scholar 

  23. Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr. 2012;82(3):257–75. https://doi.org/10.1890/11-1183.1.

  24. Burnham KP, Anderson DR. Multimodel inference - understanding AIC and BIC in model selection. Sociol Method Res. 2004;33(2):261–304. https://doi.org/10.1177/0049124104268644.

    Article  Google Scholar 

  25. Watanabe S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Lear. Res. 2010;11(Dec):3571–94.

    Google Scholar 

  26. Johnson JB, Omland KS. Model selection in ecology and evolution. Trends in Eco. Evol. 2004;19(2):101–8.

    Article  Google Scholar 

  27. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002;83(8):2248–55. https://doi.org/10.1890/0012-9658(2002)083[2248:Esorwd]2.0.Co;2.

    Article  Google Scholar 

  28. Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol Appl. 2003;13(6):1790–801. https://doi.org/10.1890/02-5078.

    Article  Google Scholar 

  29. Ellison AM. Bayesian inference in ecology. Ecol Lett. 2004;7(6):509–20. https://doi.org/10.1111/j.1461-0248.2004.00603.x.

    Article  Google Scholar 

  30. Hooten MB, Hobbs NT. A guide to Bayesian model selection for ecologists. Eco. Mono. 2015;85(1):3–28.

    Article  Google Scholar 

  31. Kéry M. Introduction to WinBUGS for ecologists: Bayesian approach to regression, ANOVA, mixed models and related analyses: Academic Press; 2010.

  32. McCarthy MA. Bayesian methods for ecology: Cambridge University Press; 2007.

  33. Kareiva P, Shigesada N. Analyzing insect movement as a correlated random walk. Oecologia. 1983;56(2-3):234–8.

    Article  CAS  Google Scholar 

  34. Weisberg S. Applied linear regression. Wiley series in probability and statistics. New Jersey, USA: John Wiley & Sons; 2005.

    Book  Google Scholar 

  35. Devarajan K, Morelli TL, Tenan S. Multi-species occupancy models: review, roadmap, and recommendations. Ecography. 2020. https://doi.org/10.1111/ecog.04957.

  36. Gimenez O, Buckland ST, Morgan BJ, Bez N, Bertrand S, Choquet R, et al. Statistical ecology comes of age. Bio. Lett. 2014;10(12):20140698.

  37. Hefley TJ, Hooten MB. Hierarchical species distribution models. Curr. Landsc. Ecol. Rep. 2016;1(2):87–97.

    Article  Google Scholar 

  38. Qian SS, Cuffney TF, Alameddine I, McMahon G, Reckhow KH. On the application of multilevel modeling in environmental and ecological studies. Ecology. 2010;91(2):355–61.

    Article  Google Scholar 

  39. Holland JD, Bert DG, Fahrig L. Determining the spatial scale of species' response to habitat. Bioscience. 2004;54(3):227–33.

    Article  Google Scholar 

  40. Martin AE, Fahrig L. Measuring and selecting scales of effect for landscape predictors in species-habitat models. Ecol Appl. 2012;22(8):2277–92. https://doi.org/10.1890/11-2224.1.

    Article  PubMed  Google Scholar 

  41. Jackson HB, Fahrig L. Are ecologists conducting research at the optimal scale? Global Ecol Biogeogr. 2015;24(1):52–63. https://doi.org/10.1111/geb.12233.

    Article  Google Scholar 

  42. Morrissey MB, Ruxton GD. Multiple regression is not multiple regressions: the meaning of multiple regression and the non-problem of collinearity. Philos Theor Pract Biol. 2018;10.

  43. Mason CH, Perreault WD. Collinearity, power, and interpretation of multiple regression analysis. J. of Marketing Res. 1991;28(3):268–80.

    Article  Google Scholar 

  44. Royle JA, Dorazio RM. Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities: Elsevier; 2008.

  45. Kellner KF, Swihart RK. Accounting for imperfect detection in ecology: a quantitative review. Plos One. 2014;9(10). https://doi.org/10.1371/journal.pone.0111436.

  46. MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology. 2003;84(8):2200–7.

    Article  Google Scholar 

  47. Chen G, Kéry M, Plattner M, Ma K, Gardner BJ. Imperfect detection is the rule rather than the exception in plant distribution studies. Funct. Ecol. 2013;101(1):183–91.

    Google Scholar 

  48. Gu W, Swihart RK. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol. Cons. 2004;116(2):195–203.

    Article  Google Scholar 

  49. Lahoz-Monfort JJ, Guillera-Arroita G, Wintle BA. Imperfect detection impacts the performance of species distribution models. Glob Eco Biogeog. 2014;23(4):504–15.

    Article  Google Scholar 

  50. Kéry M, Gardner B, Monnerat CJ. Predicting species distributions from checklist data using site-occupancy models. J. Biogeog. 2010;37(10):1851–62.

    Google Scholar 

  51. Guillera-Arroita G. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography. 2017;40(2). https://doi.org/10.1111/ecog.02445.

  52. Welsh AH, Lindenmayer DB, Donnelly CF. Fitting and interpreting occupancy models. PLoS One. 2013;8(1):e52015.

    Article  CAS  Google Scholar 

  53. Guillera-Arroita G, Lahoz-Monfort JJ, MacKenzie DI, Wintle BA, McCarthy MA. Ignoring imperfect detection in biological surveys is dangerous: A response to ‘fitting and interpreting occupancy models'. PLoS One. 2014;9(7):e99571.

    Article  Google Scholar 

  54. •• Stuber EF, Gruber LF, Fontaine JJ. A Bayesian method for assessing multi-scale species-habitat relationships. Landscape Ecol. 2017;32(12):2365–81. https://doi.org/10.1007/s10980-017-0575-yThe article develops an extensive simulation study of Bayesian method of fully-flexible multi-predictor scale selection using hierarchical study design. Real data example is presented and example code is provided.

  55. •• Frishkoff LO, Mahler DL, Fortin MJ. Integrating over uncertainty in spatial scale of response within multispecies occupancy models yields more accurate assessments of community composition. Ecography. 2019;42(12):2132–43. https://doi.org/10.1111/ecog.04365First multi-species scale-selection approach. Uses linear interpolation between candidate spatial scales to approximate scale estimation with less computational intensity. Example code provided for scale-constrained implementation.

  56. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B. 1996;58(1):267–88.

    Google Scholar 

  57. Friedman J, Hastie T, Tibshirani R. JRpv. glmnet: Lasso and elastic-net regularized generalized linear models. 2009;1(4).

  58. •• Gallo T, Lehrer EW, Fidino M, Kilgour RJ, Wolff PJ, Magle SB. Need for multiscale planning for conservation of urban bats. Cons. Bio. 2018;32(3):638–47 Fully flexible multi-scale, multi-predictor scale selection approach using LASSO-inspired regression in Bayesian hierarchical model.

  59. Park T, Casella G. The Bayesian lasso. J Am Stat Assoc. 2008;103(482):681–6.

    Article  CAS  Google Scholar 

  60. •• Fotheringham AS, Yang W, Kang W. Multiscale geographically weighted regression (mgwr). Ann. Am. Assoc. Geogr. 2017;107(6):1247–65 Multi-scale method for spatially non-stationary regression analysis.

  61. •• Leong Y-Y, Yue JC. A modification to geographically weighted regression. Int. J. Health Geogr. 2017;16(1):11 Multi-scale method for spatially non-stationary regression analysis.

  62. Brunsdon C, Fotheringham AS, Charlton ME. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal. 1996;28(4):281–98.

    Article  Google Scholar 

  63. Brunsdon C, Fotheringham S, Charlton MJ. Geographically weighted regression. J R Stat Soc Series D. 1998;47(3):431–43.

    Article  Google Scholar 

  64. Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted regression: the analysis of spatially varying relationships: John Wiley & Sons; 2003.

  65. Oshan TM, Li Z, Kang W, Wolf LJ, Fotheringham AS. mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. Int J Geo-Inf. 2019;8(6):269.

    Article  Google Scholar 

  66. Gollini I, Lu B, Charlton M, Brunsdon C, Harris P. GW model: an R package for exploring spatial heterogeneity using geographically weighted models. J Stat Softw. 2015:63(17).

  67. •• Chandler R, Hepinstall-Cymerman J. Estimating the spatial scales of landscape effects on abundance. Landscape Ecol. 2016;31(6):1383–94. https://doi.org/10.1007/s10980-016-0380-zFirst method of direct scale of effect estimation. The study presents a simulation study, and small real data example using distance-weighted kernel smoothing to represent scales of effect. Example code provided.

  68. Shirk AJ, Raphael MG, Cushman SA. Spatiotemporal variation in resource selection: insights from the American marten (Martes americana). Ecol. Appl. 2014;24(6):1434–44.

    Article  Google Scholar 

  69. Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L. What determines the spatial extent of landscape effects on species? Landscape Ecol. 2016;31(6):1177–94.

    Article  Google Scholar 

  70. Moraga AD, Martin AE, Fahrig LJ. The scale of effect of landscape context varies with the species’ response variable measured. Landscape Ecol. 2019;34(4):703–15.

    Article  Google Scholar 

  71. Stuber EF, Fontaine JJ. Ecological neighborhoods as a framework for umbrella species selection. Biol Conserv. 2018;223:112–9. https://doi.org/10.1016/j.biocon.2018.04.026.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Lenore Fahrig and Amanda Martin for inviting us to write this review and for their critical comments that have helped us improve the manuscript.

Authors’ Contributions

ES determined the scope and conducted the literature review, and wrote the initial draft. Both authors contributed to the summary of recent methodological advances in their areas of expertise. Both authors contributed to subsequent drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica F. Stuber.

Ethics declarations

Conflict of Interest

Erica Stuber and Lutz Gruber declare no conflicts of interest

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by either of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spatial Scale-Measurement, Influence, and Integration

Electronic supplementary material

ESM 1

(TXT 1835 kb)

ESM 2

(XLSX 40 kb)

ESM 3

(TXT 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuber, E.F., Gruber, L.F. Recent Methodological Solutions to Identifying Scales of Effect in Multi-scale Modeling. Curr Landscape Ecol Rep 5, 127–139 (2020). https://doi.org/10.1007/s40823-020-00055-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40823-020-00055-8

Keywords

Navigation