Skip to main content
Log in

A Comparison of men’s Life History, Aging, and Testosterone Levels among Datoga Pastoralists, Hadza Foragers, and Qom Transitional Foragers

  • Original Article
  • Published:
Adaptive Human Behavior and Physiology Aims and scope Submit manuscript

Abstract

Objectives

Relative to industrialized populations, men from subsistence groups exhibit lower testosterone values and more modest declines with age. Limited energy availability has been hypothesized to suppress testosterone production, particularly during young adulthood when testosterone levels are highest, resulting in a flatter trajectory of age-decline. Energetic constraint, however, is not unique to the evolutionary ecology of humans, and yet significant age-related testosterone decline is observed in numerous species of wild primates. Conversely, human life history is distinguished by extensive bi-parental care and male provisioning. Because fathers show decreased testosterone with parenting effort, we argue that within more naturalistic and evolutionarily relevant ecologies, natural fertility and earlier reproduction suppresses testosterone in emerging adulthood such that a lower relative baseline dictates less age-decline across the remaining lifespan.

Methods

We examine men’s testosterone levels as contrasting functions of energetic status and paternal involvement across three traditional populations with substantial variability in men’s nutritional condition and parental investment. Anthropometric and demographic data along with saliva samples were collected from 70 Datoga, 29 Hadza, and 43 Qom men, ages 20–72 years.

Results

Population variation in salivary testosterone was greatest at younger ages and patterned so paternal involvement associated with lower morning and evening testosterone, along with diminished age-decline in both measures. Men’s energetic status as indicated by body mass index was not associated with testosterone values or age-related decline.

Conclusions

Within socioecological contexts of smaller scale society, these data suggest that blunted age-decline in men’s testosterone levels is primarily due to population variation in parental investment rather than energetic constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfonso-Durruty, M. P., & Valeggia, C. R. (2016). Growth patterns among indigenous Qom children of the argentine Gran Chaco. American Journal of Human Biology, 28, 895–904.

  • Alvarado, L. C. (2010). Population differences in the testosterone levels of young men are associated with prostate cancer disparities in older men. American Journal of Human Biology, 22, 449–455.

    Google Scholar 

  • Alvarado, L. C. (2011). Total testosterone in young men is more closely associated than free testosterone with prostate cancer disparities. Therapeutic Advances in Urology, 3, 99–106.

    Google Scholar 

  • Alvarado, L. C. (2013). Do evolutionary life-history trade-offs influence prostate cancer risk? A review of population variation in testosterone levels and prostate cancer disparities. Evolutionary Applications, 6, 117–133.

    Google Scholar 

  • Alvarado, L. C., Muller, M. N., Emery, T. M., Klimek, M., Nenko, I., & Jasieńska, G. (2015). The paternal provisioning hypothesis: Effects of workload and testosterone production on Men’s musculature. American Journal of Physical Anthropology, 158, 19–35.

    Google Scholar 

  • Alvergne, A., Faurie, C., & Raymond, M. (2009). Variation in testosterone levels and male reproductive effort: Insight from a polygynous human population. Hormones and Behavior, 56, 491–497.

    Google Scholar 

  • Beall, C. M., Worthman, C. M., Stallings, J., Strohl, K. P., Brittenham, G. M., & Barragan, M. (1992). Salivary testosterone concentration of Aymara men native to 3600 m. Annals of Human Biology, 19, 67–78.

    Google Scholar 

  • Beehner, J. C., Gesquiere, L., Seyfarth, R. M., Cheney, D. L., Alberts, S. C., & Altmann, J. (2009). Testosterone related to age and life-history stages in male baboons and geladas. Hormones and Behavior, 56, 472–480.

    Google Scholar 

  • Bentley, G. R., Harrigan, A. M., Campbell, B., & Ellison, P. T. (1993). Seasonal effects on salivary testosterone levels among lese males of the Ituri Forest, Zaire. American Journal of Human Biology, 5, 711–717.

    Google Scholar 

  • Bokony, V., Garamszegi, L. Z., Hirschenhauser, K., & Liker, A. (2008). Testosterone and melanin-based black plumage coloration: A comparative study. Behavioral Ecology and Sociobiology, 62, 1229–1238.

    Google Scholar 

  • Bribiescas, R. G. (1996). Testosterone levels among Aché hunter-gatherer men : A functional interpretation of population variation among adult males. Human Nature, 7, 163–188.

    Google Scholar 

  • Bribiescas R.G. (2001a). Reproductive ecology and life history of the human male. American Journal of Physical Anthropology, Supplement 33, 148–176.

  • Bribiescas, R. G. (2001b). Reproductive physiology of the human male: An evolutionary and life history perspective. In P. T. Ellison (Ed.), Reproductive ecology and human evolution (pp. 107–135). New York: Aldine de Gruyter.

    Google Scholar 

  • Bribiescas, R. G. (2010). An evolutionary and life history perspective on human male reproductive senescence. Annals of the New York Academy of Sciences, 1204, 54–64.

    Google Scholar 

  • Bribiescas, R. G. (2006). On the evolution of human male reproductive senescence: proximate mechanisms and life history strategies. Evolutionary Anthropology, 15, 132–141.

  • Campbell, B., O'Rourke, M. T., & Lipson, S. F. (2003). Salivary testosterone and body composition among Ariaal males. American Journal of Human Biology, 15, 697–708.

    Google Scholar 

  • Campbell, B., Leslie, P., & Campbell, K. (2006). Age-related changes in testosterone and SHBG among Turkana males. American Journal of Human Biology, 18, 71–82.

    Google Scholar 

  • Christiansen, K. H. (1991). Serum and saliva sex hormone levels in !Kung san men. American Journal of Physical Anthropology, 86, 37–44.

    Google Scholar 

  • Clutton-Brock, T. H. (1991). The evolution of parental care. Princeton: Princeton University Press.

    Google Scholar 

  • Ellis, L., & Nyborg, H. (1992). Racial/ethnic variations in male testosterone levels: a probable contributor to group differences in health. Steroids, 57, 72–75.

  • Ellison, P. T., & Panter-Brick, C. (1996). Salivary testosterone levels among Tamang and kami males of Central Nepal. Human Biology, 68, 955–965.

    Google Scholar 

  • Ellison, P. T., Lipson, S. F., & Meredith, M. D. (1989). Salivary testosterone levels in males from the Ituri Forest of Zaïre. American Journal of Human Biology, 1, 21–24.

    Google Scholar 

  • Ellison, P. T., Bribiescas, R. G., Bentley, G. R., Campbell, B. C., Lipson, S. F., Panter-Brick, C., & Hill, K. (2002). Population variation in age-related decline in male salivary testosterone. Human Reproduction, 17, 3251–3253.

    Google Scholar 

  • Fernandez-Duque, E., Valeggia, C. R., & Mendoza, S. P. (2009). The biology of paternal care in human and nonhuman primates. Annual Review of Anthropology, 38, 115–130.

    Google Scholar 

  • Gettler, L. T. (2014). Applying socioendocrinology to evolutionary models: Fatherhood and physiology. Evolutionary Anthropology, 23, 146–160.

    Google Scholar 

  • Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. PNAS, 108, 16194–16199.

    Google Scholar 

  • Gray, P. B. (2003). Marriage, parenting, and testosterone variation among Kenyan Swahili men. American Journal of Physical Anthropology, 122, 279–286.

    Google Scholar 

  • Gray, P. B., & Campbell, B. C. (2009). Human male testosterone, pair-bonding, and fatherhood. In P. T. Ellison & P. B. Gray (Eds.), Endocrinology of social relationships (pp. 270–293). Cambridge: Harvard University Press.

    Google Scholar 

  • Gray, P. B., & Crittenden, A. N. (2014). Father Darwin: Effects of children on men, viewed from an evolutionary perspective. Fathering, 12, 121–142.

    Google Scholar 

  • Gray, P. B., Kahlenberg, S. M., Barrett, E. S., Lipson, S. F., & Ellison, P. T. (2002). Marriage and fatherhood are associated with lower testosterone in males. Evolution and Human Behavior, 23, 193–201.

    Google Scholar 

  • Gray, P. B., Kruger, A., Huisman, H. W., Wissing, M. P., & Vorster, H. H. (2006a). Predictors of south African male testosterone levels: The THUSA study. American Journal of Human Biology, 18, 123–132.

    Google Scholar 

  • Gray, P. B., Yang, C. J., & Pope, H. G., Jr. (2006b). Fathers have lower salivary testosterone levels than unmarried men and married non-fathers in Beijing, China. Proceedings of the Royal Society B, 273, 333–339.

    Google Scholar 

  • Gray, P. B., Parkin, J. C., & Samms-Vaughan, M. E. (2007). Hormonal correlates of human paternal interactions: A hospital-based investigation in urban Jamaica. Hormones and Behavior, 52, 499–507.

    Google Scholar 

  • Gray, P. B., McHale, T. S., & Carré, J. M. (2017). A review of human male field studies of hormones and behavioral reproductive effort. Hormones and Behavior, 91, 52–67.

    Google Scholar 

  • Gurven, M., & Hill, K. (2009). Why do men hunt? A re-evaluation of "man the hunter" and the sexual division of labor. Current Anthropology, 50, 51–74.

    Google Scholar 

  • Hamilton, J. B., & Mestler, G. E. (1969). Mortality and survival: Comparison of eunuchs with intact men and women in a mentally retarded population. Journal of Gerontology, 24, 395–411.

    Google Scholar 

  • Hill, K., & Hurtado, A. M. (1996). Ache life history: The ecology and demography of a foraging people. New York: de Gruyter.

    Google Scholar 

  • Hooper P.L. (2011). The structure of energy production and redistribution among Tsimane’ forager-horticulturalists. PhD Dissertation, Evolutionary Anthropology, University of New Mexico.

  • Hu, H., Odedina, F. T., Reams, R. R., Lissaker, C. T., & Xu, X. (2015). Racial Differences in Age-Related Variations of Testosterone Levels Among US Males: Potential Implications for Prostate Cancer and Personalized Medication. Journal of Racial and Ethnic Health Disparities, 2, 69–76.

  • Kaplan, H., & Lancaster, J. B. (2000). The evolutionary economics and psychology of the demographic transition to low fertility. In L. Cronk, N. Chagnon, & W. Irons (Eds.), Evolutionary biology and human behavior: 20 years later (pp. 283–322). New York: Aldine de Gruyter.

    Google Scholar 

  • Kaplan, H., Hill, K., Lancaster, J. B., & Hurtado, M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–185.

    Google Scholar 

  • Kehinde, E. O., Akanji, A. O., Memon, A., Bashir, A. A., Daar, A. S., Al-Awadi, K. A., et al. (2006). Prostate cancer risk: The significance of differences in age related changes in serum conjugated and unconjugated steroid hormone concentrations between Arab and Caucasian men. International Urology and Nephrology, 38, 33–44.

    Google Scholar 

  • Ketterson, E. D., & Nolan, V., Jr. (1992). Hormones and life histories: An integrative approach. American Naturalist, 140, s33–s62.

    Google Scholar 

  • Ketterson, E. D., & Nolan, V., Jr. (1999). Adaptation, exaptation, and constraint: A hormonal perspective. American Naturalist, 154, S4–S25.

    Google Scholar 

  • Klima, G. (1970). The Barabaig: East African cattle-herders. Prospect Heights: Waveland Press.

    Google Scholar 

  • Kraska-Miller, M. (2014). Nonparametric statistics for social and behavioral sciences. Boca Raton: CRC Press.

    Google Scholar 

  • Krause, W. (2006). Androgens in the demography of male life course - a review. Biodemography and Social Biology, 53, 4–12.

    Google Scholar 

  • Kuzawa, C. W., Muller, M. N., Gettler, L., McDade, T. W., & Feranil, A. (2009). Fatherhood, pairbonding, and testosterone in the Philippines. Hormones and Behavior, 56, 429–435.

    Google Scholar 

  • Lancaster, J. B. (1997). The evolutionary history of human parental Investment in Relation to population growth and social stratification. In P. A. Gowaty (Ed.), Feminism and evolutionary biology (pp. 466–489). New York: Chapman & Hall.

    Google Scholar 

  • Lancaster, J. B., & Lancaster, C. S. (1983). Parental investment: The hominid adaptation. In D. Ortner (Ed.), How Humans Adapt: A Biocultural Odyssey. Proceedings of the Seventh International Smithsonian Symposium (pp. 33–66). Washington DC: Smithsonian Institution.

    Google Scholar 

  • Lancaster, J. B., Kaplan, H., Hill, K., & Hurtado, A. M. (2000). The Evolution of Life History, Intelligence, and Diet Among Chimpanzees and Human Foragers. In F. Tonneau & N. S. Thompson (Eds.), Perspectives in Ethology: Evolution, Culture and Behavior (Vol. 13, pp. 47–72). New York: Plenum Publishers.

  • Lincoln, G. A. (1971). The seasonal reproductive changes in the red deer stag (Cervus elaphus). Journal of Zoology, 163, 105–123.

    Google Scholar 

  • Lincoln, G. A. (1992). Biology of antlers. Journal of Zoology, 226, 517–528.

    Google Scholar 

  • Lukas, W. D., Campbell, B. C., & Ellison, P. T. (2004). Testosterone, aging, and body composition in men from Harare, Zimbabwe. American Journal of Human Biology, 16, 704–712.

    Google Scholar 

  • Magid, K., Chatterton, R. T., Ahamed, F. U., & Bentley, G. R. (2018). Childhood ecology influences salivary testosterone, pubertal age and stature of Bangladeshi UK migrant men. Nature Ecology & Evolution, 2, 1146–1154.

    Google Scholar 

  • Marlowe, F. W. (1999). Showoffs or providers? The parenting effort of Hadza men. Evolution and Human Behavior, 20, 391–404.

    Google Scholar 

  • Marlowe, F. W. (2000). Paternal investment and the human mating system. Behavioural Processes, 51, 45–61.

    Google Scholar 

  • Marlowe, F. W. (2003). A critical period for provisioning by Hadza men. Implications for pair bonding. Evolution and Human Behavior, 24, 217–229.

    Google Scholar 

  • Marlowe, F. W. (2010). The Hadza: Hunter-gatherers of Tanzania. Berkeley: University of California Press.

    Google Scholar 

  • Mendoza, M. (1999). The Western Toba: Family life and subsistence of a former hunter-gatherer society (pp.79-108). In E. S. Miller (Ed.), Peoples of the Gran Chaco. Westport: Bergin & Garvey.

    Google Scholar 

  • Min, K. J., Lee, C. K., & Park, H. N. (2012). The lifespan of Korean eunuchs. Current Biology, 22, R792–R793.

    Google Scholar 

  • Muehlenbein, M. P., & Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17, 527–558.

    Google Scholar 

  • Muehlenbein, M. P., Hirschtick, J. L., Bonner, J. Z., & Swartz, A. M. (2010). Toward quantifying the usage costs of human immunity: Altered metabolic rates and hormone levels during acute immune activation in men. American Journal of Human Biology, 22, 546–556.

    Google Scholar 

  • Muller, M. N. (2017). Testosterone and reproductive effort in male primates. Hormones and Behavior, 91, 36–51.

    Google Scholar 

  • Muller, M. N., & Emery, T. M. (2012). Mating, parenting, and male reproductive strategies. In J. C. Mitani, J. Call, P. M. Kappeler, R. A. Palombit, & J. B. Silk (Eds.), The evolution of primate societies (pp. 387–411). Chicago: University of Chicago Press.

    Google Scholar 

  • Muller, M. N., & Wrangham, R. W. (2004). Dominance, aggression and testosterone in wild chimpanzees: a test of the 'challenge hypothesis'. Animal Behaviour, 67, 113–123.

  • Muller, M. N., & Wrangham, R. W. (2005). Testosterone and energetics in wild chimpanzees (Pan troglodytes schweinfurthii). American Journal of Primatology, 66, 119–130.

    Google Scholar 

  • Muller, M. N., Marlowe, F. W., Bugumba, R., & Ellison, P. T. (2009). Testosterone and paternal care in east African foragers and pastoralists. Proceedings of the Royal Society B, 276, 347–354.

    Google Scholar 

  • Nunes, S., Fite, J. E., & French, J. A. (2000). Variation in steroid hormones associated with infant care behaviour and experience in male marmosets (Callithrix kuhlii). Animal Behaviour, 60, 857–865.

    Google Scholar 

  • Parent, A. S., Teilmann, G., Juul, A., Skakkebaek, N. E., Toppari, J., & Bourguignon, J. P. (2003). The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocrine Reviews, 24, 668–693.

    Google Scholar 

  • Perini, T., Ditzen, B., Fischbacher, S., & Ehlert, U. (2012). Testosterone and relationship quality across the transition to fatherhood. Biological Psychology, 90, 186–191.

    Google Scholar 

  • Promislow, D. (1992). Cost of sexual selection in natural population of mammals. Proceedings of the Royal Society B, 247, 203–210.

    Google Scholar 

  • Promislow, D., Montgomerie, R., & Martin, T. E. (1992). Mortality costs of sexual dimorphism in birds. Proceedings of the Royal Society B, 250, 143–150.

    Google Scholar 

  • Roney, J. R. (2016). Theoretical frameworks for human behavioral endocrinology. Hormones and Behavior, 84, 97–110.

    Google Scholar 

  • Santos, C. V., French, J. A., & Otta, E. (1997). Infant Carrying Behavior in Callitrichid Primates: Callithrix and Leontopithecus. International Journal of Primatology, 18, 889–907.

  • Sellen, D. W. (1999). Polygyny and child growth in a traditional pastoral society: The case of the Datoga of Tanzania. Human Nature, 10, 329–371.

    Google Scholar 

  • Shen, X., Wang, R., Yu, N., Shi, Y., Li, H., Xiong, C., Li, Y., Wells, E. M., & Zhou, Y. (2016). Reference ranges and Association of age and Lifestyle Characteristics with testosterone, sex hormone binding globulin, and luteinizing hormone among 1166 Western Chinese men. PLoS One, 11(10), e0164116.

    Google Scholar 

  • Stiver, K. A., & Alonzo, S. H. (2009). Parental and mating effort: Is there necessarily a trade-off? Ethology, 115, 1101–1126.

    Google Scholar 

  • Storey, A. E., Walsh, C. J., Quinton, R. L., & Wynne-Edwards, K. E. (2000). Hormonal correlates of paternal responsiveness in new and expectant fathers. Evolution and Human Behavior, 21, 79–95.

  • Tecot, S. R., & Baden, A. L. (2018). Profiling caregivers: Hormonal variation underlying allomaternal care in wild red-bellied lemurs, Eulemur rubriventer. Physiology & Behavior, 193, 135–148.

    Google Scholar 

  • Tehrani, F. R., Mansournia, M. A., Solaymani-Dodaran, M., Minooee, S., & Azizi, F. (2017). Serum variations of anti-mullerian hormone and total testosterone with aging in healthy adult Iranian men: A population-based study. PLoS One, 12(7), e0179634.

    Google Scholar 

  • Travison, T. G., Araujo, A. B., O'Donnell, A. B., Kupelian, V., & McKinlay, J. B. (2007). A population-level decline in serum testosterone levels in American men. The Journal of Clinical Endocrinology and Metabolism, 92, 196–202.

    Google Scholar 

  • Trumble, B. C., Cummings, D., von Rueden, C., O'Connor, K. A., Smith, E. A., Gurven, M., et al. (2012). Physical competition increases testosterone among Amazonian forager-horticulturalists: A test of the 'challenge hypothesis'. Proceedings of the Royal Society B, 279, 2907–2912.

    Google Scholar 

  • Trumble, B. C., Blackwell, A. D., Stieglitz, J., Thompson, M. E., Suarez, I. M., Kaplan, H., & Gurven, M. (2016). Associations between male testosterone and immune function in a pathogenically stressed forager-horticultural population. American Journal of Physical Anthropology, 161, 494–505.

    Google Scholar 

  • Valeggia, C. R., Lewarch, C. L., & Ellison, P. T. (2009). Testosterone, aging, and seasonality among Toba men of northern Argentina. American Journal of Physical Anthropology, 138, S48–S259.

  • Valeggia, C. R., Burke, K. M., & Fernandez-Duque, E. (2010). Nutritional status and socioeconomic change among Toba and Wichí populations of the Argentinean Chaco. Economics and Human Biology, 8, 100–110.

    Google Scholar 

  • Veile, A. (2018). Hunter-gatherer diets and human behavioral evolution. Physiology & Behavior, 193, 190–195.

    Google Scholar 

  • Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., De Souza, R., et al. (2006). Growth rates and life histories in twenty-two small-scale societies. American Journal of Human Biology, 18, 295–311.

    Google Scholar 

  • Wingfield, J. C., Hegner, R. E., Dufty, A. M., Jr., & Ball, G. F. (1990). The "challenge hypothesis": Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist, 136, 829–846.

    Google Scholar 

  • Wood, J. W. (1994). Dynamics of human reproduction: Biology, biometry, demography. Hawthorne: Aldine de Gruyter Publishers.

  • Wood, B. M., & Marlowe, F. (2013). Household and kin provisioning by Hadza men. Human Nature, 24, 280–317.

  • Wynne-Edwards, K. E. (2001). Hormonal changes in mammalian fathers. Hormones & Behavior, 40, 139–145.

    Google Scholar 

  • Ziegler, T. E. (2000). Hormones associated with non-maternal infant care: a review of mammalian and avian studies. Folia Primatologica, 71, 6–21.

    Google Scholar 

Download references

Acknowledgements

We thank Susan Lipson for providing laboratory assistance with hormone assays. We are also thankful to the Datoga, Hadza, and Qom men who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Calistro Alvarado.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarado, L.C., Valeggia, C.R., Ellison, P.T. et al. A Comparison of men’s Life History, Aging, and Testosterone Levels among Datoga Pastoralists, Hadza Foragers, and Qom Transitional Foragers. Adaptive Human Behavior and Physiology 5, 251–273 (2019). https://doi.org/10.1007/s40750-019-00116-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40750-019-00116-1

Keywords

Navigation