Skip to main content

Advertisement

Log in

Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

The global solar irradiance data plays a vital role in evaluating the performance of all the solar energy conversion devices. In general there are two methods to predict the performance of such irradiance, namely physical models and the machine learning models. This paper presents a generalized regression neural network model (a machine learning technique) for estimating the global solar irradiance using seasonal and meteorological factors as input parameters. Results obtained from this proposed generalized regression neural network approach are compared with the results estimated by extensively used machine learning based methodologies such as fuzzy and artificial neural network models. Such a comparative results clearly indicate that prediction accuracy of proposed generalized regression neural network model is in good agreement with experimentally measured values. The mean percentage error for using GRNN, fuzzy logic and artificial neural network are 3.55%, 4.64%, and 5.49%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

http://www.indiaenvironmentportal.org.in/files/srd-sec.pdf.

Code Availability

The paper includes all the codes related to the prediction.

Abbreviations

D:

Day of the year

H:

Monthly mean daily irradiance on horizontal surface

\({\mathbf{H}}_{0}\) :

Mean clear sky daily irradiance

\({\raise0.7ex\hbox{${\mathbf{H}}$} \!\mathord{\left/ {\vphantom {{\mathbf{H}} {{\mathbf{H}}_{0} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\mathbf{H}}_{0} }$}}\) :

Clearness index

\({\mathbf{H}}_{{{\mathbf{meas}}}}\) :

Measured value of monthly mean daily irradiance on horizontal surface

\({\mathbf{H}}_{{{\mathbf{estim}}}}\) :

Predicted value of monthly mean daily irradiance on horizontal surface

S:

Monthly mean daily hours of bright sunshine

\({\mathbf{S}}_{0}\) :

Monthly mean of maximum possible daily hours of bright sunshine

\({\raise0.7ex\hbox{${\mathbf{S}}$} \!\mathord{\left/ {\vphantom {{\mathbf{S}} {{\mathbf{S}}_{0} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\mathbf{S}}_{0} }$}}\) :

Mean fraction possible sunshine hours

T:

Monthly mean hourly temperature (°C)

\({\mathbf{T}}_{0}\) :

Monthly mean hourly maximum possible temperature (°C)

\({\raise0.7ex\hbox{${\mathbf{T}}$} \!\mathord{\left/ {\vphantom {{\mathbf{T}} {{\mathbf{T}}_{0} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\mathbf{T}}_{0} }$}}\) :

Ratio of monthly mean hourly temperature to monthly mean hourly maximum possible temperature

\({\mathbf{T}}_{{\mathbf{a}}}\) :

Ambient temperature (°C)

ω:

Hour angle

\({{\varvec{\upomega}}}_{{\mathbf{s}}}\) :

Hour angle at sunset

Ø:

Latitude of location

δ:

Declination angle

FL:

Fuzzy logic

ANN:

Artificial neural network

GRNN:

Generalized regression neural network

NN:

Neural network

RMSE:

Root mean square error

K-NN:

K-nearest neighbor algorithm

SVM:

Support vector machine

References

  1. Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178. https://doi.org/10.1007/s40745-017-0112-5

    Article  Google Scholar 

  2. Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York

    Google Scholar 

  3. Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin

    Book  Google Scholar 

  4. Sivakumar P, Christraj W, Sridharan M, Jayamalathi N (2012) Performance comparison of differently configured solar water heaters. Eur J Sci Res 91(1):23–31

    Google Scholar 

  5. Marimuthu M, Geetha P, Deepiha P, Sridharan M (2015) MATLAB simulation of transparent glass PV/T hybrid water collectors. In: IEEE 9th international conference on intelligent systems and control (ISCO), Coimbatore, pp 1–7. https://doi.org/10.1109/ISCO.2015.7282327

  6. Voyant C, Notton G, Kalogirou S, Nivet M-L, Paoli C, Motte F, Fouilloy A (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105(2017):569–582. https://doi.org/10.1016/j.renene.2016.12.095

    Article  Google Scholar 

  7. Wang L, Kisi O, Zounemat-Kermani M, Salazar GA, Zhu Z, Gong W (2016) Solar radiation prediction using different techniques: model evaluation and comparison. Renew Sustain Energy Rev 2016(61):384–97. https://doi.org/10.1016/j.rser.2016.04.024

    Article  Google Scholar 

  8. Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Modell Softw 15(1):101–124. https://doi.org/10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  9. Zeng J, Qiao W (2013) Short-term solar power prediction using a support vector machine. Renew Energy 52(1):118–127. https://doi.org/10.1016/j.renene.2012.10.009

    Article  Google Scholar 

  10. Orfila A, Ballester JL, Oliver R, Alvarez A, Tintoré J (2002) Forecasting the solar cycle with genetic algorithms. Astron Astrophys 386(1):313–318. https://doi.org/10.1051/0004-6361:20020246

    Article  Google Scholar 

  11. Chen SX, Gooi HB, Wang MQ (2013) Solar radiation forecast based on fuzzy logic and neural networks. Renew Energy 60:195–201. https://doi.org/10.1016/j.renene.2013.05.011

    Article  Google Scholar 

  12. Bendu H, Deepak BBVL, Murugan S (2016) Application of GRNN for the prediction of performance 585 and exhaust emissions in HCCI engine using ethanol. Energy Convers Manag 122:165–173. https://doi.org/10.1016/j.enconman.2016.05.061

    Article  Google Scholar 

  13. Rizwan M, Jamil M, Kirmani S, Kothari DP (2014) Fuzzy logic based modeling and estimation of 573 global solar energy using meteorological parameters. Energy 70(6):685–691. https://doi.org/10.1016/j.energy.2014.04.057

    Article  Google Scholar 

  14. Solar radiation handbook (2008) SEC & IMD, Pune. http://www.indiaenvironmentportal.org.in/files/srd-sec.pdf

  15. Ghritlahre HK, Chandrakar P, Ahmad AA (2019) Comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann Data Sci. https://doi.org/10.1007/s40745-019-00236-1

    Article  Google Scholar 

  16. Ghritlahre HK, Prasad RK (2018) Development of optimal ANN model to estimate the thermal performance of roughened solar air heater using two different learning algorithms. Ann Data Sci 5:453–467. https://doi.org/10.1007/s40745-018-0146-3

    Article  Google Scholar 

  17. Sridharan M (2020) Application of generalized regression neural network in predicting the performance of solar photovoltaic thermal water collector. Ann Data Sci. https://doi.org/10.1007/s40745-020-00273-1

    Article  Google Scholar 

  18. Sridharan M (2020) Applications of artificial intelligence techniques in heat exchanger systems, advanced analytic and control techniques for thermal systems with heat exchangers. Academic Press, New York, pp 325–334. https://doi.org/10.1016/B978-0-12-819422-5.00015-3. ISBN: 978-0-12-819422-5

    Book  Google Scholar 

  19. Sridharan M, Jayaprakash G, Chandrasekar M, Vigneshwar P, Paramaguru S, Amarnath K (2018) Prediction of solar photovoltaic/thermal collector power output using fuzzy logic. J Sol Energy Eng 140(6):1–6. https://doi.org/10.1115/1.4040757

    Article  Google Scholar 

  20. Sridharan M (2020) Application of generalized regression neural network in predicting the performance of natural convection solar dryer. J Sol Energy Eng 142(3):1–7. https://doi.org/10.1115/1.4047824

    Article  Google Scholar 

  21. Sridharan M (2020) Predicting performance of double pipe parallel and counter flow heat exchanger using fuzzy logic. J Therm Sci Eng Appl 12(3):1–11. https://doi.org/10.1115/1.4044696

    Article  Google Scholar 

  22. Sridharan M, Jayaprakash G (2019) Verification and validation of solar photovoltaic thermal water collectors performance using fuzzy logic. J Verif Valid Uncert 4(4):1–8. https://doi.org/10.1115/1.4045895

    Article  Google Scholar 

  23. Sridharan M (2020) Application of fuzzy logic expert system in predicting cold and hot fluid outlet temperature of counter-flow double-pipe heat exchanger advanced analytic and control techniques for thermal systems with heat exchangers. Academic Press, New York, pp 307–323. https://doi.org/10.1016/B978-0-12-819422-5.00014-1. ISBN: 978-0-12-819422-5

    Book  Google Scholar 

  24. Sridharan M, Shri Balaji S (2020) Application of generalized regression neural network in predicting the thermal performance of solar flat plate collector systems. J Therm Sci Eng Appl 13(2):1–11. https://doi.org/10.1115/1.4047824

    Article  Google Scholar 

  25. Sridharan M, Devi R, Dharshini CS, Bhavadarani M (2019) IoT Based performance monitoring and control in counter flow double pipe heat exchanger. Internet Things 5:34–40. https://doi.org/10.1016/j.iot.2018.11.002

    Article  Google Scholar 

Download references

Funding

There is no funding related to the content in this journal article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sridharan.

Ethics declarations

Conflict of interest

There is no conflict of interest related to this work.

Author contributions

The corresponding author is responsible for all the contributions in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

For the prediction of global solar irradiance at Jodhpur, Shillong, New Delhi, and Kolkata stations, Fuzzy logic based architecture has been developed and presented in Fig. 8. was proposed by [13] (Table 8).

Fig. 8
figure 8

Fuzzy logic based architecture suggested by [9] for prediction of global solar energy at Jodhpur, Shillong, New Delhi, and Kolkata stations

Table 8 Comparison between GRNN model with and without spread function

Appendix 2

For the prediction of global solar irradiance at Jodhpur, Shillong, New Delhi, and Kolkata stations, ANN logic based architecture has been developed and presented in Fig. 9. was proposed by [13].

Fig. 9
figure 9

ANN model based architecture suggested by [9] for prediction of global solar energy at Jodhpur, Shillong, New Delhi, and Kolkata stations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridharan, M. Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters. Ann. Data. Sci. 10, 1107–1125 (2023). https://doi.org/10.1007/s40745-020-00319-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-020-00319-4

Keywords

Navigation