Skip to main content
Log in

Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

In this article, we develop Bayesian estimation procedure for estimating the stress strength reliability R = P [X > Y ] when X (strength) and Y (stress) are the inverse Chen random variables. First, we study some statistical properties of the inverse Chen distribution such as quantiles, mode, stochastic ordering, entropy measure, order statistics and stress strength reliability. Then, we estimate the stress strength parameters and R using maximum likelihood and Bayesian estimations. A symmetric (squared error loss) and an asymmetric (entropy loss) loss functions are considered for Bayesian estimation under the assumption of gamma prior. Since, joint posterior distribution of the model parameters and R involve multiple integrations and have complex form. So, we do not get analytical solution without using any numerical techniques. Therefore, we propose to use Lindley’s approximation and Markov chain Monte Carlo techniques for Bayesian computation. A simulation study is carried out for the proposed Bayes estimators of unknown parameters and compared with the maximum likelihood estimator on the basis of mean squared error. Finally, an empirical illustration based on failure time data is presented to demonstrate the applicability of inverse Chen stress strength model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

https://www.jstor.org/stable/1266340, https://doi.org/10.2307/1266340.

Code availability

R-code is provided as per need for the reviewers.

References

  1. Shi Y (2014) Big data: history, current status, and challenges going forward. Bridge 44(4):6–11

    Google Scholar 

  2. Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York

    Google Scholar 

  3. Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin

    Book  Google Scholar 

  4. Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178

    Article  Google Scholar 

  5. Chen Z (2000) A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat Probab Lett 49(2):155–61

    Article  Google Scholar 

  6. El-Gohary A, Alshamrani A, Al-Otaibi AN (2013) The generalized Gompertz distribution. Appl Math Model 37(1–2):13–24

    Article  Google Scholar 

  7. Gupta RD, Kundu D (1999) Theory & methods: generalized exponential distributions. Aust New Zealand J Stat 41(2):173–88

    Article  Google Scholar 

  8. Kundu D, Gupta RD (2006) Estimation of \(P[Y<X]\) for Weibull distributions. IEEE Trans Reliab 55(2):270–80

    Article  Google Scholar 

  9. Sharma VK, Singh SK, Singh U (2014) A new upside-down bathtub shaped hazard rate model for survival data analysis. Appl Math Comput 239:242–53

    Google Scholar 

  10. Surles JG, Padgett WJ (2001) Inference for reliability and stress–strength for a scaled Burr type X distribution. Lifetime Data Anal 7(2):187–200

    Article  Google Scholar 

  11. Srivastava PK, Srivastava RS (2014) Two parameter inverse Chen distribution as survival model. Int J Stat Math 11(1):12–16

    Google Scholar 

  12. Church JD, Harris B (1970) The estimation of reliability from stress–strength relationships. Technometrics 12(1):49–54

    Article  Google Scholar 

  13. Birnbaum ZW (1956) On a use of the Mann–Whitney statistic. Proc Third Berkeley Symp Math Stat Probab 1:13–17

    Google Scholar 

  14. Birnbaum ZW, McCarty RC (1958) A distribution-free upper confidence bound for \(Pr\{Y<X\}\), based on independent samples of X and Y. Ann Math Stat 1:558–62

    Article  Google Scholar 

  15. Al-Hussaini EK, Hussein M (2011) Estimation using censored data from exponentiated Burr type XII population. Am Open J Stat 1:33–45

    Article  Google Scholar 

  16. Nasiri P (2011) Estimation of R=\(P(Y<X)\) for two-parameter exponential distribution. Aust J Basic Appl Sci 5:414–20

    Google Scholar 

  17. Wong A (2012) Interval estimation of \(P(Y<X)\) for generalized Pareto distribution. J Stat Plan Inference 142(2):601–7

    Article  Google Scholar 

  18. Al-Mutairi DK, Ghitany ME, Kundu D (2013) Inferences on stress–strength reliability from Lindley distributions. Commun Stat Theory Methods 42(8):1443–63

    Article  Google Scholar 

  19. Khamnei HJ (2013) Reliability for Lindley distribution with an outlier. Bull Math Sci Appl 2:23–8

    Google Scholar 

  20. Ali MM, Pal M, Woo J (2012) Estimation of \(p(y<x)\) in a four-parameter generalized Gamma distribution. Aus J Stat 41(3):197–210

    Google Scholar 

  21. Amiri N, Azimi R, Yaghmaei F, Babanezhad M (2013) Estimation of stress–strength parameter for two-parameter Weibull distribution. Int J Adv Stat Probab 1(1):4–8

    Article  Google Scholar 

  22. Singh SK, Singh U, Sharma VK (2014) Estimation on system reliability in generalized Lindley stress–strength model. J Stat Appl Probab 3(1):61–75

    Article  Google Scholar 

  23. Sharma VK, Singh SK, Singh U, Agiwal V (2015) The inverse Lindley distribution: a stress–strength reliability model with application to head and neck cancer data. J Ind Produ Eng 32(3):162–73

    Google Scholar 

  24. Sharma VK (2018) Bayesian analysis of head and neck cancer data using generalized inverse Lindley stressstrength reliability model. Commun Stat Theory Methods 47(5):1155–80

    Article  Google Scholar 

  25. Kumar M, Pathak A, Soni S (2019) Bayesian inference for Rayleigh distribution under step-stress partially accelerated test with progressive type-II censoring with binomial removal. Ann Data Sci 6:117–152

    Article  Google Scholar 

  26. Eliwa M, El-Morshedy M (2019) Bivariate Gumbel-G family of distributions: statistical properties, Bayesian and non-Bayesian estimation with pplication. Ann Data Sci 6(1):39–60

    Article  Google Scholar 

  27. Goyal T, Rai PK, Maurya SK (2020) Bayesian estimation for GDUS exponential distribution under type-I progressive hybrid censoring. Ann Data Sci 7:307–345

    Article  Google Scholar 

  28. Mahmoud MAW, Ghazal MGM, Radwan HMM (2020) Bayesian estimation and optimal censoring of inverted generalized linear exponential distribution using progressive first failure censoring. Ann Data Sci. https://doi.org/10.1007/s40745-020-00259-z

    Article  Google Scholar 

  29. Yousaf F, Ali S, Shah I (2019) Statistical inference for the Chen distribution based on upper record values. Ann Data Sci 6:831–851

    Article  Google Scholar 

  30. Bhatti FA, Hamedani GG, Najibi SM, Ahmad M (2019) On the extended Chen distribution: development, properties, characterizations and applications. Ann Data Sci. https://doi.org/10.1007/s40745-019-00202-x

    Article  Google Scholar 

  31. Anzagra L, Sarpong S, Nasiru S (2020) Odd Chen-G family of distributions. Ann Data Sci. https://doi.org/10.1007/s40745-020-00248-2

    Article  Google Scholar 

  32. Milgram MS (1985) The generalized integro-exponential function. Math Comput 44(170):443–58

    Article  Google Scholar 

  33. Kenney JF, Keeping ES (1962) Skewness. 7.10 in mathematics of statistics, Pt. 1, 3rd edn. Van Nostrand, Princeton

    Google Scholar 

  34. Moors JJ (1988) A quantile alternative for kurtosis. J R Stat Soc Ser D (Stat) 37(1):25–32

    Google Scholar 

  35. Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, Berlin

    Book  Google Scholar 

  36. Singh PK, Singh SK, Singh U (2008) Bayes estimator of inverse Gaussian parameters under general entropy loss function using Lindley’s approximation. Commun Stat Simul Comput 37(9):1750–62

    Article  Google Scholar 

  37. Lindley DV (1980) Approximate Bayesian methods. Trabajos de estadstica y de investigacin operative 31(1):223–45

    Article  Google Scholar 

  38. Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Book  Google Scholar 

  39. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–41

    Article  Google Scholar 

  40. Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46(3):167–74

    Google Scholar 

  41. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–92

    Article  Google Scholar 

  42. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Article  Google Scholar 

  43. Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 5(3):375–83

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thanks editor-in-chief and two anonymous referees whose suggestions led to substantial improvement on the manuscript. Author also grateful thanks to Dr Jitendra Kumar, Department of Statistics, Central University of Rajasthan, Ajmer and Dr Vikas Kumar Sharma, Department of Statistics, Banaras Hindu University, Varanasi, India for improving the initial draft of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Agiwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned}&\rho _{1}=\frac{\partial \log \pi \left( \varTheta \right) }{\partial \lambda _{1}},\rho _{2}=\frac{\partial \log \pi \left( \varTheta \right) }{\partial \lambda _{2}},\rho _{3}=\frac{\partial \log \pi \left( \varTheta \right) }{\partial \beta },\phi _{1}=\frac{\partial \phi \left( \varTheta \right) }{\partial \lambda _{1}},\phi _{2}=\frac{\partial \phi \left( \varTheta \right) }{\partial \lambda _{2}},\\&\phi _{3}=\frac{\partial \phi \left( \varTheta \right) }{\partial \beta },\phi _{11}=\frac{\partial ^{2}\phi (\varTheta )}{\partial \lambda _{1}^{2}}, \phi _{22}=\frac{\partial ^{2}\phi \left( \varTheta \right) }{\partial \lambda _{2}^{2}},\phi _{33}=\frac{\partial ^{2}\phi (\varTheta )}{\partial \beta ^{2}},\phi _{12}=\phi _{21}=\frac{\partial ^{2}\phi \left( \varTheta \right) }{\partial \lambda _{1}\partial \lambda _{2}},\\&\phi _{13}=\phi _{31}=\frac{\partial ^{2}\phi (\varTheta )}{\partial \beta \partial \lambda _{1}},\phi _{23}=\phi _{32}=\frac{\partial ^{2}\phi (\varTheta )}{\partial \beta \partial \lambda _{2}},L_{113}=L_{311}=L_{131}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \beta \partial \lambda _{1}^{2}},\\&L_{111}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \lambda _{1}^{3}},L_{123}=L_{321}=L_{312}=L_{213}=L_{231}=L_{132}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \beta \partial \lambda _{1}\partial \lambda _{2}},\\&L_{222}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \lambda _{2}^{3}},L_{112}=L_{211}=L_{121}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \lambda _{1}^{2}\partial \lambda _{2}}, L_{333}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \beta ^{3}},\\&L_{223}=L_{232}=L_{322}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \beta \partial \lambda _{2}^{2}},L_{122}=L_{221}=L_{212}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \lambda _{1}\partial \lambda _{2}^{2}},\\&L_{331}=L_{133}=L_{313}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \beta ^{2}\partial \lambda _{1}},L_{332}=L_{233}=L_{323}=\frac{\partial ^{3}\log L\left( \varTheta \right) }{\partial \beta ^{2}\partial \lambda _{2}},\\&\left( \begin{array}{ccc} \sigma _{11}&{} \sigma _{12}&{} \sigma _{13}\\ \sigma _{21}&{} \sigma _{22}&{} \sigma _{23}\\ \sigma _{31}&{} \sigma _{32}&{} \sigma _{33}\\ \end{array}\right) =-\left( \begin{array}{ccc} \frac{\partial ^{2}\log L}{\partial \lambda ^{2}_{1}}&{}\frac{\partial ^{2}\log L}{\partial \lambda _{1}\partial \lambda _{2}}&{}\frac{\partial ^{2}\log L}{\partial \lambda _{1}\partial \beta }\\ \frac{\partial ^{2}\log L}{\partial \lambda _{1}\partial \lambda _{2}}&{} \frac{\partial ^{2}\log L}{\partial \lambda ^{2}_{2}}&{} \frac{\partial ^{2}\log L}{\partial \lambda _{2}\partial \beta }\\ \frac{\partial ^{2}\log L}{\partial \beta \partial \lambda _{1}}&{} \frac{\partial ^{2}\log L}{\partial \beta \partial \lambda _{2}}&{}\frac{\partial ^{2}\log L}{\partial \beta ^{2}} \end{array}\right) ^{-1}=-\left( \begin{array}{ccc} \delta _{11}&{}\delta _{12}&{}\delta _{13}\\ \delta _{21}&{} \delta _{33}&{} \delta _{23}\\ \delta _{31}&{}\delta _{32}&{}\delta _{33} \end{array}\right) ^{-1},\\&\rho _{1}=\frac{(a_{1}-1)}{\lambda _{1}}-b_{1},\rho _{2}=\frac{(a_{2}-1)}{\lambda _{2}}-b_{2},\rho _{3}=-\frac{1}{\beta },\delta _{11}=-\frac{n}{\lambda _{1}^{2}}, \delta _{12}=\delta _{21}=0, \\&\delta _{22}=-\frac{m}{\lambda _{2}^{2}},\delta _{13}=\delta _{31}=\sum \limits _{i=1}^{n}x_{i}^{-\beta }(\log x_{i})e^{x_{i}^{-\beta }},\delta _{23}=\delta _{32}=\sum \limits _{j=1}^{m}y_{j}^{-\beta }(\log y_{j})e^{y_{j}^{-\beta }},\\&\delta _{33}=-\frac{\left( n+m \right) }{\beta ^{2}}+\sum \limits _{i=1}^{n}x_{i}^{-\beta }(\log x_{i})^{2}-\lambda _{1}\sum \limits _{i=1}^{n}x_{i}^{-\beta }(\log x_{i})^{2}e^{x_{i}^{-\beta }}\left( 1+x_{i}^{-\beta }\right) +\\&\sum \limits _{j=1}^{m}y_{j}^{-\beta }(\log y_{j})^{2}-\lambda _{2}\sum \limits _{j=1}^{m}y_{j}^{-\beta }(\log y_{j})^{2}e^{y_{j}^{-\beta }}\left( 1+y_{j}^{-\beta }\right) , L_{111}=\frac{2n}{\lambda _{1}^{3}}, L_{222}=\frac{2m}{\lambda _{2}^{3}},\\&L_{333}=\frac{2\left( n+m \right) }{\beta ^{3}}-\sum \limits _{i=1}^{n}x_{i}^{-\beta }(\log x_{i})^{3}-\sum \limits _{j=1}^{m}y_{j}^{-\beta }(\log y_{j})^{3}+\lambda _{1}\sum \limits _{i=1}^{n}x_{i}^{-\beta }(\log x_{i})^{3}\\&e^{x_{i}^{-\beta }}\left( 1+3x_{i}^{-\beta }+x_{i}^{-2\beta }\right) +\lambda _{2}\sum \limits _{j=1}^{m}y_{j}^{-\beta }(\log y_{j})^{3}e^{y_{j}^{-\beta }}\left( 1+3y_{j}^{-\beta }+y_{j}^{-2\beta }\right) , \\&L_{133}=L_{331}=L_{313}=-\sum \limits _{i=1}^{n}x_{i}^{-\beta }(\log x_{i})^{2}e^{x_{i}^{-\beta }}\left( 1+x_{i}^{-\beta }\right) ,L_{233}=L_{332}=L_{323}\\&=-\sum \limits _{j=1}^{m}y_{j}^{-\beta }(\log y_{j})^{2}e^{y_{j}^{-\beta }}\left( 1+y_{j}^{-\beta }\right) ,L_{123}=L_{321}=L_{312}=L_{213}=L_{231}=\\&L_{132}=L_{113}=L_{311}=L_{131}=L_{112}=L_{211}=L_{121}=L_{223}=L_{232}=L_{322}=\\&L_{122}=L_{221}=L_{212}=0,R=\frac{\lambda _{1}}{\lambda _{1}+\lambda _{2}},R_{1}=\frac{\lambda _{2}}{\left( \lambda _{1}+\lambda _{2} \right) ^{2} }, R_{2}=-\frac{\lambda _{1}}{\left( \lambda _{1}+\lambda _{2} \right) ^{2} },\\&R_{11}=-\frac{2\lambda _{2}}{\left( \lambda _{1}+\lambda _{2} \right) ^{3} }, R_{22}=\frac{2\lambda _{1}}{\left( \lambda _{1}+\lambda _{2} \right) ^{3} },R_{12}=\frac{\lambda _{1}-\lambda _{2}}{\left( \lambda _{1}+\lambda _{2} \right) ^{3} },R^{-1}=1+\frac{\lambda _{2}}{\lambda _{1}},\\&R_{1}^{-1}=-\frac{\lambda _{2}}{\lambda _{1}^{2}}, R_{2}^{-1}=\frac{1}{\lambda _{1}}, R_{11}^{-1}=\frac{2\lambda _{2}}{\lambda _{1}^{3}}, R_{22}^{-1}=0, R_{12}^{-1}=-\frac{1}{\lambda _{1}^{2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agiwal, V. Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data. Ann. Data. Sci. 10, 317–347 (2023). https://doi.org/10.1007/s40745-020-00313-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-020-00313-w

Keywords

Mathematics Subject Classification

Navigation