Skip to main content
Log in

Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

This article studies the problem of statistical estimation and optimal censoring from three-parameter inverted generalized linear exponential distribution under progressive first failure censored samples. The maximum likelihood estimation is presented to estimate the unknown parameters. Approximate confidence interval is constructed to compute the interval estimation for the parameters and the delta method is used to compute the interval estimation for survival, hazard rate, and reversed hazard rate functions. The Gibbs sampler with the Metropolis-Hastings algorithm is applied to generate the Markov chain Monte Carlo samples from the posterior functions to approximate the Bayes estimation using several loss functions and to establish the symmetric credible interval for the parameters. A two real data sets are used to study the suggested censoring schemes and the optimal censoring is used to show the performance of the censoring schemes using maximum likelihood estimator and Bayes estimator. Also, a new vision is studied to obtain the optimal censoring using Bayes estimator under varying loss functions. Finally, a simulation study is presented to compare the different estimation methods based on mean square error and average absolute bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zheng G (2002) On the Fisher information matrix in type-II censored data from the exponentiated exponential family. Biom J 44(3):353–357

    Article  Google Scholar 

  2. Singh U, Gupta PK, Upadhyay SK (2005) Estimation of parameters for exponentiated-Weibull family under type-II censoring scheme. Comput Stat Data Anal 48:509–523

    Article  Google Scholar 

  3. Balakrishnan N, Han D (2008) Exact inference for a simple step-stress model with competing risks for failure from exponential distribution under type-II censoring. J Stat Plan Inference 138:4172–4186

    Article  Google Scholar 

  4. Sultan KS, Alsadat NH, Kundu D (2014) Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring. J Stat Comput Simul 84(10):2248–2265

    Article  Google Scholar 

  5. Khorram E, Farahani ZSM (2014) Statistical inference of weighted exponential lifetimes under progressive type-II censoring scheme. Qual Technol Quant Manag 11(4):433–451

    Article  Google Scholar 

  6. Rezaei S, Noughabi RA, Nadarajah S (2015) Estimation of stress-strength reliability for the generalized Pareto distribution based on progressively censored samples. Ann Data Sci 2:83–101

    Article  Google Scholar 

  7. Deya S, Singh S, Tripathi YM, Asgharzadeh A (2016) Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat Methodol 32:185–202

    Article  Google Scholar 

  8. Mahmoud MAW, Yhiea NM, El-Said SM (2016) Estimation of parameters for the exponentiated Pareto distribution based on progressively type-II right censored data. J Egypt Math Soc 24:431–436

    Article  Google Scholar 

  9. Lee K, Cho Y (2017) Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive type-II censoring. J Appl Stat 44(5):811–832

    Article  Google Scholar 

  10. Gunasekera S (2018) Inference for the Burr-XII reliability under progressive censoring with random removals. Math Comput Simul 144:182–195

    Article  Google Scholar 

  11. Salemi UH, Rezaei S, Si Y, Nadarajah S (2018) On optimal progressive censoring schemes for normal distribution. Ann Data Sci 5:637–658

    Article  Google Scholar 

  12. Kumar M, Pathak A, Soni S (2019) Bayesian inference for Rayleigh distribution under step-stress partially accelerated test with progressive type-II censoring with binomial removal. Ann Data Sci 6:117–152

    Article  Google Scholar 

  13. Balasooriya U (1995) Failure-censored reliability sampling plans for the exponential distribution. J Stat Comput Simul 52:337–349

    Article  Google Scholar 

  14. Wu J-W, Hung W-L, Tsai C-H (2003) Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan. Statistics 37:517–525

    Article  Google Scholar 

  15. Wu J-W, Yu H-Y (2005) Statistical inference about the shape parameter of the Burr type-XII distribution under the failure-censored sampling plan. Appl Math Comput 163:443–482

    Google Scholar 

  16. Wu S-J, Kus C (2009) On estimation based on progressive first-failure-censored sampling. Comput Stat Data Anal 53:3659–3670

    Article  Google Scholar 

  17. Dube M, Krishna H, Garg R (2016) Generalized inverted exponential distribution under progressive first-failure censoring. J Stat Comput Simul 86(6):1095–1114

    Article  Google Scholar 

  18. Dube M, Garg R, Krishna H (2016) On progressively first failure fensored Lindley distribution. Comput Stat 31:139–163

    Article  Google Scholar 

  19. Ahmed EA (2017) Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application. J Appl Stat 44(9):1576–1608

    Article  Google Scholar 

  20. Maurya RK, Tripathi YM, Rastogi MK (2019) Estimation and prediction for a progressively first-failure censored inverted exponentiated Rayleigh distribution. J Stat Theory Pract 13:39

    Article  Google Scholar 

  21. Kayal T, Tripathi YM, Wang L (2019) Inference for the Chen distribution under progressive first-failure censoring. J Stat Theory Pract 13:52

    Article  Google Scholar 

  22. Sarhan AM, Kundu D (2009) Generalized linear failure rate distribution. Commun Stat Theory Methods 38:642–660

    Article  Google Scholar 

  23. Tian Y, Tian M, Zhu Q (2014) Transmuted linear exponential distribution: a new generalization of the linear exponential distribution. Commun Stat Simul Comput 43:2661–2677

    Article  Google Scholar 

  24. Mahmoud MAW, Alam FMA (2010) The generalized linear exponential distribution. Stat Probab Lett 80:1005–1014

    Article  Google Scholar 

  25. Mahmoud MAW, Ghazal MGM, Radwan HMM (2017) Inverted generalized linear exponential distribution as a lifetime model. Appl Math Inf Sci 11(6):1747–1765

    Article  Google Scholar 

  26. Hassan AS, Abd-Allah M (2019) On the inverse power Lomax distribution. Ann Data Sci 6:259–278

    Article  Google Scholar 

  27. Eliwa MS, El-Morshedy M, Ibrahim M (2019) Inverted inverse Gompertz distribution: properties and different estimation methods with application to complete and censored data. Ann Data Sci 6:321–339

    Article  Google Scholar 

  28. Yadav AS, Maiti SS, Saha M (2019) The inverse Xgamma distribution: statistical properties and different methods of estimation. Ann Data Sci

  29. Cohen AC (1965) Maximum likelihood estimation in the Weibull distribution based on complete and censored samples. Technometric 7(4):579–588

    Article  Google Scholar 

  30. Greene WH (2000) Econometric analysis, 4th edn. Prentice-Hall, New York

    Google Scholar 

  31. Barot DR, Patel MN (2017) Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data. Commun Stat Theory Method 46(3):1317–1336

    Article  Google Scholar 

  32. Peng X, Yan Z (2014) Estimation and application for a new extended Weibull distribution. Reliab Eng Syst Saf 121:34–42

    Article  Google Scholar 

  33. Devroye L (1984) A simple algorithm for generating random variates with a log-concave density function. Computing 33:247–257

    Article  Google Scholar 

  34. Jia X, Guo B (2015) Analysis of non-repairable cold-standby systems in Bayes theory. J Stat Comput Simul 86:2089–2112

    Article  Google Scholar 

  35. Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8:69–92

    Google Scholar 

  36. Galea M, Leiva V, Paula GA (2004) Influence diagnostics in log-Birnbaum–Saunders regression models. J Appl Stat 31(9):1049–1064

    Article  Google Scholar 

  37. Leiva V, Barros M, Paula GA (2009) Generalized Birnbaum–Saunders models using R. Brazilian Statistical Association, Brazil

    Google Scholar 

  38. Kang MS, Goo JH, Song I, Chun JA, Her YG, Hwang SW, Park SW (2013) Estimating design floods based on the critical storm duration for small watersheds. J Hydro-environ Res 7:209–218

    Article  Google Scholar 

  39. Ng HKT, Chan PS, Balakrishnan N (2004) Optimal progressive censoring plans for the Weibull distribution. Technometrics 46:470–481

    Article  Google Scholar 

  40. Zhang Y, Meeker WQ (2005) Bayesian life test planning for the Weibull distribution with given shape parameter. Metrika 61:237–249

    Article  Google Scholar 

  41. Kundu D (2008) Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics 50(2):144–154

    Article  Google Scholar 

  42. Balakrishnan N, Sandhu RA (1995) A simple algorithm for generating progressively type-II generated samples. Am Stat 49:229–230

    Google Scholar 

Download references

Acknowledgements

All calculations were performed on the High-Performance Computer (HPC) maintained by Computational Chemistry Laboratory, Faculty of Science, Minia University, Egypt. This HPC was funded through grants from the Science and Technology Development Fund, STDF, Egypt (Grant Nos. 5480 & 7972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam M. M. Radwan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

To prove Lemma 1, we want to prove that \(\frac{\partial ^2 \log {(\delta _{1}(\lambda |\mu ,\theta ,\mathbf{x} ))}}{\partial \lambda ^2}\) and \(\frac{\partial ^2 \log {(\delta _{2}(\mu |\lambda ,\theta ,\mathbf{x} ))}}{\partial \mu ^2}\) are negative. The second derivative of \(\log {(\delta _{1}(\lambda |\mu ,\theta ,\mathbf{x} ))}\) w.r.t. \(\lambda\) can be written as

$$\begin{aligned}&\frac{\partial ^2 \log {(\delta _{1}(\lambda |\mu ,\theta ,\mathbf{x} ))}}{\partial \lambda ^2}=-\sum _{i=1}^m \frac{\theta \ (\theta -1)}{x_{i}^2} \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta -2 }-\sum _{i=1}^m \frac{1}{x_i^4 \left( \frac{\lambda }{x_{i}^2}+\frac{\mu }{x_{i}^3}\right) ^2} \\&\quad - (\theta -1) \sum _{i=1}^m \frac{1}{x_{i}^2 \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^2}+\sum _{i=1}^m\frac{\theta \ (k(R_{i}+1)-1) \ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta -2 }}{x_{i}^2 \ \Biggr (\ 1-e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \Biggr )^2 \ } \\&\quad \times \Biggr [\ - \Biggr (\ 1-e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \Biggr )\ -\theta \Biggr (\ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} +\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }-1 \Biggr )\ \Biggr ], \end{aligned}$$

and the second derivative of \(\log {(\delta _{2}(\mu |\lambda ,\theta ,\mathbf{x} ))}\) w.r.t. \(\mu\) can be written as

$$\begin{aligned}&\frac{\partial ^2 \log {(\delta _{2}(\mu |\lambda ,\theta ,\mathbf{x} ))}}{\partial \mu ^2}=-\sum _{i=1}^m \frac{\theta \ (\theta -1)}{4 \ x_{i}^4} \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta -2 }-\sum _{i=1}^m \frac{1}{x_i^6 \left( \frac{\lambda }{x_{i}^2}+\frac{\mu }{x_{i}^3}\right) ^2} \\&\quad - (\theta -1) \sum _{i=1}^m \frac{1}{4 \ x_{i}^4 \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^2}+\sum _{i=1}^m\frac{\theta \ (k(R_{i}+1)-1) \ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta -2 }}{4 \ x_{i}^4 \ \Biggr (\ 1-e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \Biggr )^2 \ } \\&\quad \times \Biggr [\ - \Biggr (\ 1-e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \Biggr )\ -\theta \Biggr (\ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} +\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }-1 \Biggr )\ \Biggr ]. \end{aligned}$$

Since \(\Biggr (\ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} +\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta } \Biggr )\ > 1\), for \(\lambda >0\), \(\mu >0\), \(\theta >0\) and \(x_{i}>0,i=1,,m\), then the result is satisfied.

Appendix 2

To prove Lemma 2, we want to prove that \(\frac{\partial ^2 \log {(\delta _{3}(\theta |\mu ,\lambda ,\mathbf{x} ))}}{\partial \theta ^2}\) is negative. The second derivative of \(\log {(\delta _{3}(\theta |\mu ,\lambda ,\mathbf{x} ))}\) w.r.t. \(\theta\) can be written as

$$\begin{aligned}&\frac{\partial ^2 \log {(\delta _{3}(\theta |\mu ,\lambda ,\mathbf{x} ))}}{\partial \theta ^2}= \frac{-1}{\theta ^2} (m+a_{1}-1)-\sum _{i=1}^m \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta } \log ^2\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) \\&\quad + \sum _{i=1}^m \frac{ (k(R_{i}+1)-1) \ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta -2 } \log ^2\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) }{ \Biggr (\ 1-e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} \Biggr )^2 \ } \\&\quad \times \Biggr [\ -\Biggr (\ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} +\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }-1 \Biggr )\ \Biggr ]\ \end{aligned}$$

Since \(\Biggr (\ e^{-\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta }} +\left( \frac{\lambda }{x_{i}}+\frac{\mu }{2 \ x_{i}^2}\right) ^{\theta } \Biggr )\ > 1\), for \(\lambda >0\), \(\mu >0\), \(\theta >0\) and \(x_{i}>0,i=1,,m\), then the result is satisfied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.A.W., Ghazal, M.G.M. & Radwan, H.M.M. Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring. Ann. Data. Sci. 10, 527–554 (2023). https://doi.org/10.1007/s40745-020-00259-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-020-00259-z

Keywords

Navigation