Skip to main content

Advertisement

Log in

Microalgae Biofilm and Bacteria Symbiosis in Nutrient Removal and Carbon Fixation from Wastewater: a Review

  • Biology and Pollution (R Boopathy and Y Hong, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The utilization of attached microalgae and bacteria to degrade wastewater has become a more promising treatment process to replace traditional methods. That is because the algae-bacteria biofilm can not only remove nutrients from the water but also achieve the effect of carbon fixation. Besides, the attached microalgae are easy to harvest and can be used for the processing of high value-added products. This paper reviews the knowledge of microalgae biofilm combined with bacteria to treat wastewater and provides insights into the bioremediation of the ecosystem by algae and bacteria.

Recent Findings

Due to the photosynthesis of algae and the oxidative decomposition of bacteria, the symbiotic system of algae biofilm and bacteria from wastewater has significant advantages in harvesting and degradation. To further improve wastewater utilization efficiency and carbon fixation, it is necessary to understand the algae-bacteria symbiotic system of mechanism and influencing factors of nitrogen and phosphorus removal and carbon fixation. The photobioreactor for microalgae cultivation is gradually developed and optimized, laying a solid foundation for actual production and application.

Summary

The algae-bacteria symbiotic system is more effective compared to individual microalgae treatment since the algae-bacteria biofilm has better removal efficiency and adsorption capacity as well as easy to harvest. This article introduces the mechanism and influencing factors of the algae-bacteria symbiotic system to remove nutrients and organic pollutants from water in detail. Furthermore, the research progress of photobioreactors is summarized as well. Finally, the application prospect of microalgae biofilm in wastewater treatment was prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lofrano G, Carotenuto M, Libralato G, Domingos RF, Markus A, Dini L, et al. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res. 2016;92:22–37. https://doi.org/10.1016/j.watres.2016.01.033.

    Article  CAS  Google Scholar 

  2. Maia MA, Dotto GL, Perez-Lopez OW, Gutterres M. Phosphate removal from industrial wastewaters using layered double hydroxides. Environ Technol. 2021;42(20):3095–105. https://doi.org/10.1080/09593330.2020.1722257.

    Article  CAS  Google Scholar 

  3. Tanzer J, Hermann R, Hermann L. Remediating agricultural legacy nutrient loads in the Baltic Sea region. Sustainability. 2021;13(7):3872. https://doi.org/10.3390/su13073872.

    Article  Google Scholar 

  4. Qiao S, Hou C, Wang X, et al. Minimizing greenhouse gas emission from wastewater treatment process by integrating activated sludge and microalgae processes. Sci Total Environ. 2020;732:139032. https://doi.org/10.1016/j.scitotenv.2020.139032.

    Article  CAS  Google Scholar 

  5. Khan AU, Khan M, Malik N, Cho MH, Khan MM. Recent progress of algae and blue-green algae-assisted synthesis of gold nanoparticles for various applications. Bioproc Biosyst Eng. 2019;42(1):1–15. https://doi.org/10.1007/s00449-018-2012-2.

    Article  CAS  Google Scholar 

  6. Mukherjee C, Chowdhury R, Sutradhar T, Begam M, Ghosh SM, Basak SK, et al. Parboiled rice effluent: A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Res. 2016;19:225–36. https://doi.org/10.1016/j.algal.2016.09.009.

    Article  Google Scholar 

  7. • Li S, Li X, Ho S. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: an updated review. Chemosphere. 2022;291:132863. https://doi.org/10.1016/j.chemosphere.2021.132863. This paper introduces the mechanism of CO2 fixation by microalgae and discusses the factors affecting CO2 adsorption by microalgae.

  8. Oswald WJ, Gotaas HB, Golueke CG, Kellen WR. Algae in waste treatment. Sewage Ind Wastes. 1957;29(4):437–55.

    Google Scholar 

  9. Zhu L, Cheng Y, Li Z. Microalgal cultivation with biogas slurry for biofuel production. Bioresour Technol. 2016;220:629–36. https://doi.org/10.1016/j.biortech.2016.08.111.

    Article  CAS  Google Scholar 

  10. Details R. Biofixation of carbon dioxide by Chlamydomonas sp. in a tubular photobioreactor. Int J Renew Energy D. 2012. https://doi.org/10.14710/ijred.1.1.10-14.

  11. Fitzgerald CM, Camejo P, Oshlag JZ, Noguera DR. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res. 2015;70:38–51. https://doi.org/10.1016/j.watres.2014.11.041.

  12. Schmidt JJ, Gagnon GA, Jamieson RC. Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecol Eng. 2016;95:588–93. https://doi.org/10.1016/j.ecoleng.2016.06.114.

    Article  Google Scholar 

  13. Posadas E, García-Encina P, Soltau A, Domínguez A, Díaz I, et al. Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresour Technol. 2013;139:50–8. https://doi.org/10.1016/j.biortech.2013.04.008.

    Article  CAS  Google Scholar 

  14. Munoz R, Kollner C, Guieysse B. Biofilm photobioreactors for the treatment of industrial wastewaters. J Hazard Mater. 2009;161(1):29–34. https://doi.org/10.1016/j.jhazmat.2008.03.018.

    Article  CAS  Google Scholar 

  15. de Godos I, Gonzalez C, Becares E, Garcia-Encina PA, Munoz R. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl Microbiol Biot. 2009;82(1):187–94. https://doi.org/10.1007/s00253-008-1825-3.

    Article  CAS  Google Scholar 

  16. Song C, Han X, Qiu Y, Liu Z, Li S, Kitamura Y. Microalgae carbon fixation integrated with organic matters recycling from soybean wastewater: Effect of pH on the performance of hybrid system. Chemosphere. 2020. https://doi.org/10.1016/j.chemosphere.2020.126094.

    Article  Google Scholar 

  17. Kong W, Kong J, Ma J, Lyu H, Feng S, Wang Z, et al. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO2 fixation simultaneously. J Environ Manag. 2021. https://doi.org/10.1016/j.jenvman.2021.112070.

    Article  Google Scholar 

  18. Hu X, Song C, Mu H, Liu Z, Kitamura Y. Optimization of simultaneous soybean processing wastewater treatment and flue gas CO2 fixation via chlorella sp. L166 cultivation. J Environ Chem Eng. 2020. https://doi.org/10.1016/j.jece.2020.103960.

    Article  Google Scholar 

  19. Li S, Zhao S, Yan S, Qiu Y, Song C, Li Y, et al. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production - a review. Chinese J Chem Eng. 2019;27(12):2845–56. https://doi.org/10.1016/j.cjche.2019.03.028.

    Article  CAS  Google Scholar 

  20. •• Lutzu GA, Dunford NT. Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. Front Biosci-Landmark. 2018;23:1487–504. https://doi.org/10.2741/4656. This review investigates the impact of the microalgae-other microorganism interactions on the production of biomass and high value compounds.

  21. Chai WS, Tan WG, Munawaroh HSH, Gupta VK, Ho SH, Show PL. Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut. 2021. https://doi.org/10.1016/j.envpol.2020.116236.

    Article  Google Scholar 

  22. Ahmed SF, Mofijur M, Parisa TA, Islam N, Kusumo F, Inayat A, et al. Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere. 2022. https://doi.org/10.1016/j.chemosphere.2021.131656.

    Article  Google Scholar 

  23. Sforza E, Pastore M, Spagni A, Bertucco A. Microalgae-bacteria gas exchange in wastewater: how mixotrophy may reduce the oxygen supply for bacteria. Environ Scie Pollut R. 2018;25(28):28004–14. https://doi.org/10.1007/s11356-018-2834-0.

    Article  CAS  Google Scholar 

  24. Kreis CT, Grangier A, Baeumchen O. In vivo adhesion force measurements of Chlamydomonas on model substrates. Soft Matter. 2019;15(14):3027–35. https://doi.org/10.1039/c8sm02236d.

    Article  CAS  Google Scholar 

  25. Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol. 2019;126(2):359–68. https://doi.org/10.1111/jam.14095.

    Article  CAS  Google Scholar 

  26. Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu HQ, et al. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Technol. 2017;241:1127–37. https://doi.org/10.1016/j.biortech.2017.06.054.

    Article  CAS  Google Scholar 

  27. • Zhuang LL, Azimi Y, Yu D, Wu YH, Hu HY. Effects of nitrogen and phosphorus concentrations on the growth of microalgae Scenedesmus. LX1 in suspended-solid phase photobioreactors (ssPBR). Biomass Bioenergy. 2018;109:47–53. https://doi.org/10.1016/j.biombioe.2017.12.017. This article studies the effect of different nitrogen and phosphorus concentrations on attched microalgae in the suspended-solid phase photobioreactor (ssPBR).

  28. Al-Amshawee S, Yunus MYBM, Vo DVN, Tran NH. Biocarriers for biofilm immobilization in wastewater treatments: a review. Environ Chem Lett. 2020;18(6):1925–45. https://doi.org/10.1007/s10311-020-01049-y.

    Article  CAS  Google Scholar 

  29. Morgan-Sagastume F. Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. Crit Rev Env Sci Tec. 2018;48(5):439–70. https://doi.org/10.1080/10643389.2018.1465759.

    Article  CAS  Google Scholar 

  30. Zhang Q, Yu Z, Jin S, Zhu L, Liu C, Zheng H, et al. Lignocellulosic residue as biocarrier for algal biofilm growth: Effects of carrier physicochemical proprieties and toxicity on algal biomass production and composition. Bioresour Technol. 2019;293:122091. https://doi.org/10.1016/j.biortech.2019.122091.

    Article  CAS  Google Scholar 

  31. Zhang Q, Yu Z, Zhu L, Ye T, Zuo J, Li X, et al. Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production. Water Res. 2018;139:144–57. https://doi.org/10.1016/j.watres.2018.03.076.

    Article  CAS  Google Scholar 

  32. Chen CY, Zhuang KW, Chang YH, Nagarajan D, Huang CC, Chang JS. Basic oxygen furnace slag as a support material for the cultivation of indigenous marine microalgae. Bioresour Technol. 2021. https://doi.org/10.1016/j.biortech.2021.125968.

    Article  Google Scholar 

  33. Zheng Y, Huang Y, Liao Q, Zhu X, Fu Q, Xia A. Effects of wettability on the growth of Scenedesmus obliquus biofilm attached on glass surface coated with polytetrafluoroethylene emulsion. Int J Hydrogen Energ. 2016;41(46):21728–35. https://doi.org/10.1016/j.ijhydene.2016.07.007.

    Article  CAS  Google Scholar 

  34. Johnson MB, Wen Z. Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biot. 2010;85(3):525–34. https://doi.org/10.1007/s00253-009-2133-2.

    Article  CAS  Google Scholar 

  35. Lariyah MS, Mohiyaden HA, Hayder G, Hayder G, Hussein A, Basri H, et al. Application of moving bed biofilm reactor (MBBR) and integrated fixed activated sludge (IFAS) for biological river water purification system: a short review. IOP Conf Ser Earth Environ Sci. 2016;32:012005. https://doi.org/10.1088/1755-1315/32/1/012005.

    Article  Google Scholar 

  36. Deng L, Guo W, Ngo HH, Zhang X, Wang XC, Zhang Q, et al. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system. Bioresour Technol. 2016:87–93. https://doi.org/10.1016/j.biortech.2016.02.057.

  37. Dey P, Mall N, Chattopadhyay A, Chakraborty M, Maiti MK. Enhancement of lipid productivity in oleaginous colletotrichum fungus through genetic transformation using the yeast CtDGAT2b gene under model-optimized growth condition. PLoS One. 2014;9(11). https://doi.org/10.1371/journal.pone.0111253.

  38. Lechien V, Rodriguez C, Ongena M, Hiligsmann S, Thonart P. Physicochemical and biochemical characterization of non-biodegradable cellulose in Miocene gymnosperm wood from the Entre-Sambre-et-Meuse, Southern Belgium. Org Geochem. 2006;37(11):1465–76. https://doi.org/10.1016/j.orggeochem.2006.07.002.

    Article  CAS  Google Scholar 

  39. Mshandete AM, Bjrnsson L, Kivaisi AK, Rubindamayugi MST, Bo M. Performance of biofilm carriers in anaerobic digestion of sisal leaf waste leachate. Electron J Biotechn. 2008;11(1):93–100. https://doi.org/10.2225/vol11-issue1-fulltext-7.

    Article  CAS  Google Scholar 

  40. Le NC, Lien DT, Gupta BS, Mai C, Show PL. Enhanced degradation of diesel oil by using biofilms formed by indigenous purple photosynthetic bacteria from oil-contaminated coasts of vietnam on different carriers. Appl Biochem Biotech. 2019;191(8). https://doi.org/10.1007/s12010-019-03203-x.

  41. Ma X, Chen Y, Liu F, Zhang S, Wei Q. Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. Algal Res. 2021;55:102267. https://doi.org/10.1016/j.algal.2021.102267.

    Article  Google Scholar 

  42. •• Wang Y, Ho SH, Cheng CL, Guo WQ, Nagarajan D, Ren NQ, et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol. 2016;222:485–97. https://doi.org/10.1016/j.biortech.2016.09.106. This review introduces the types of wastewater and the design of photobioreactor.

  43. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54(4):621–39. https://doi.org/10.1111/j.1365-313X.2008.03492.x.

    Article  CAS  Google Scholar 

  44. Liu J, Pemberton B, Lewis J, Scales PJ, Martin GJO. Wastewater treatment using filamentous algae – A review. Bioresour Technol. 2020;298:122556. https://doi.org/10.1016/j.biortech.2019.122556.

    Article  CAS  Google Scholar 

  45. Wang Y, Guo W, Yen H, Ho S, Lo Y, Cheng C, et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol. 2015. https://doi.org/10.1016/j.biortech.2015.09.067.

    Article  Google Scholar 

  46. Ma X, Yan X, Yao J, Zheng S, Wei Q. Feasibility and comparative analysis of cadmium biosorption by living Scenedesmus obliquus FACHB-12 biofilms. Chemosphere. 2021. https://doi.org/10.1016/j.chemosphere.2021.130125.

    Article  Google Scholar 

  47. Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrere H. New opportunities for agricultural digestate valorization: current situation and perspectives. Energ Environ Sci. 2015;8(9):2600–21. https://doi.org/10.1039/c5ee01633a.

    Article  CAS  Google Scholar 

  48. Van Den Berg TE, Chukhutsina V, Van Amerongen H, Croce R, Van Oort B. Light acclimation of the colonial green alga Botryococcus braunii strain Showa. Plant Physiol. 2019. https://doi.org/10.1104/pp.18.01499.

    Article  Google Scholar 

  49. Udovic MG, et al. Co-occurrence of functional groups in phytoplankton assemblages dominated by diatoms, chrysophytes and dinoflagellates. Fundam Appl Limnol / Arch Hydrobiol. 2015;187(2):101–11. https://doi.org/10.1127/fal/2015/0759.

    Article  Google Scholar 

  50. Chang DK, Jin YA, Tai HP, Sang JS. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem Eng J. 2006;31(3):234–8. https://doi.org/10.1016/j.bej.2006.08.002.

    Article  CAS  Google Scholar 

  51. Du X, Tao Y, Li H, Liu Y, Feng K. Synergistic methane production from the anaerobic co-digestion of Spirulina platensis with food waste and sewage sludge at high solid concentrations. Renew Energ. 2019;142:55–61. https://doi.org/10.1016/j.renene.2019.04.062.

    Article  CAS  Google Scholar 

  52. •• Zhuang LL, Yu D, Zhang J, Liu Ff, Wu YH, Zhang TY, et al. The characteristics and influencing factors of the attached microalgae cultivation: a review. Renew Sust Energ Rev. 2018;94:1110–19. https://doi.org/10.1016/j.rser.2018.06.006. This article reviews the influencing factors of attched microalgae culture and the choice of culture carrier.

  53. Tu Z, Liu L, Lin W, Xie Z, Luo J. Potential of using sodium bicarbonate as external carbon source to cultivate microalga in non-sterile condition. Bioresour Technol. 2018;266:109–15. https://doi.org/10.1016/j.biortech.2018.06.076.

    Article  CAS  Google Scholar 

  54. Jesus HSD, Cassini STA, Pereira MV, Dassoler AF, Gonçalves RF. Autochthonous microalgae cultivation with anaerobic effluent: isolation of strains, survivorship, and characterization of the produced biomass. Rev Ambiente Água. 2019;14(4):e2362. https://doi.org/10.4136/ambi-agua.2362.

  55. Sanchez-Borroto Y, Tobio-Perez I, Romero-Lopez TDJ, Diaz-Dominguez Y, Ahmed Melo-Espinosa E, Piloto-Rodriguez R. Assessment of basic experimental conditions for biomass production from Chlorella vulgaris microalgae. Afinidad. 2019;76(585):63–9.

    CAS  Google Scholar 

  56. Goswami G, Makut BB, Das D. Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment. Sci Rep. 2019;9:15016. https://doi.org/10.1038/s41598-019-51315-5.

    Article  CAS  Google Scholar 

  57. Makut BB, Das D, Goswami G. Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: a sustainable approach. Algal Res. 2019;37:228–39. https://doi.org/10.1016/j.algal.2018.11.020.

    Article  Google Scholar 

  58. Srinuanpan S, Chawpraknoi A, Chantarit S, et al. A rapid method for harvesting and immobilization of oleaginous microalgae using pellet⁃forming fifilamentous fungi and the application in phytoremediation of secondary efflfluent. Int J Phytoremed. 2018;20:1017–24. https://doi.org/10.1080/15226514.2018.1452187.

    Article  CAS  Google Scholar 

  59. Walls LE, Velasquez-Orta SB, Romero-Frasca E, et al. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochem Eng J. 2019;151:107319. https://doi.org/10.1016/j.bej.2019.107319.

    Article  CAS  Google Scholar 

  60. • Shabbir S, Faheem M, Ali N, Kerr PG, Wu Y. Periphyton biofilms: a novel and natural biological system for the effective removal of sulphonated azo dye methyl orange by synergistic mechanism. Chemosphere. 2017;167:236-46.https://doi.org/10.1016/j.chemosphere.2016.10.002. This article provides a good description of the mechanism by which periphytic biofilms degrade toxic substances.

  61. Ji B, Zhang M, Gu J, Ma Y, Liu Y. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Res. 2020;179:115884. https://doi.org/10.1016/j.watres.2020.115884.

    Article  CAS  Google Scholar 

  62. Liu J, Danneels B, Vanormelingen P, Vyverman W. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS). Water Res. 2016;92:61–8. https://doi.org/10.1016/j.watres.2016.01.049.

    Article  CAS  Google Scholar 

  63. •• Lutzu GA, Zhang L, Zhang Z, Liu T. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Bioproc Biosyst Eng. 2017;40(1):1–11. https://doi.org/10.1007/s00449-016-1676-8. This article investigates the effects of light, CO2 concentration and aeration rate on the growth rate and polysaccharide production of microalgae.

  64. Zheng Y, Huang Y, Xia A, Qian F, Wei C. A rapid inoculation method for microalgae biofilm cultivation based on microalgae-microalgae co-flocculation and zeta-potential adjustment. Bioresour Technol. 2019;278:272–8. https://doi.org/10.1016/j.biortech.2019.01.083.

    Article  CAS  Google Scholar 

  65. Nguyen TTD, Nguyen TT, An Binh Q, Bui XT, Ngo HH, Vo HNP, et al. Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: exploring their role under different inoculation ratios. Bioresour Technol. 2020;314:123754. https://doi.org/10.1016/j.biortech.2020.123754.

    Article  CAS  Google Scholar 

  66. Ji C, Wang J, Zhang W, Liu J, Wang H, Gao L, et al. An applicable nitrogen supply strategy for attached cultivation of Aucutodesmus obliquus. J Appl Phycol. 2014. https://doi.org/10.1007/s10811-013-0115-3.

    Article  Google Scholar 

  67. Toninelli AE, Wang J, Liu M, Wu H, Liu T. Scenedesmus dimorphus biofilm: Photoefficiency and biomass production under intermittent lighting. Sci Rep. 2016;6:32305. https://doi.org/10.1038/srep32305.

    Article  CAS  Google Scholar 

  68. Villay A, Laroche C, Roriz D, Alaoui HE, Delbac F, Michaud P. Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour Technol. 2013;146:732–5. https://doi.org/10.1016/j.biortech.2013.07.030.

    Article  CAS  Google Scholar 

  69. Wang JF, Liu JL, Liu TZ. The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechno Biofuels. 2015. https://doi.org/10.1186/s13068-015-0240-0.

    Article  Google Scholar 

  70. Liu T, Wang J, Qiang H, Cheng P, Bei J, Liu J, et al. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol. 2013;127:216–22. https://doi.org/10.1016/j.biortech.2012.09.100.

    Article  CAS  Google Scholar 

  71. Cheng P, Ji B, Gao L, Zhang W, Wang J, Liu T. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol. 2013;138:95–100. https://doi.org/10.1016/j.biortech.2013.03.150.

    Article  CAS  Google Scholar 

  72. Bei J, Wei Z, Zhang N, Wang J, Lutzu GA, Liu T. Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp. Bioproc Biosyst Eng. 2014;37(7):1369–75. https://doi.org/10.1007/s00449-013-1109-x.

    Article  CAS  Google Scholar 

  73. Zhang W, Wang J, Wang J, Liu T. Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol. 2014. https://doi.org/10.1016/j.biortech.2014.02.044.

    Article  Google Scholar 

  74. Zhang DX, Niu GH, Yan ZN, Song JX. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int J Agr Biol Eng. 2018;11(2):33–40. https://doi.org/10.25165/j.ijabe.20181102.3420.

  75. Gonzalez-Camejo J, Robles A, Seco A, Ferrer J, Ruano MV. On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation. J Environ Manag. 2020;276. https://doi.org/10.1016/j.jenvman.2020.111343.

  76. You X, Zhang Z, Guo L, Liao Q, Wang Y, Zhao Y, et al. Integrating acidogenic fermentation and microalgae cultivation of bacterial-algal coupling system for mariculture wastewater treatment. Bioresour Technol. 2021;320. https://doi.org/10.1016/j.biortech.2020.124335.

  77. Li L, Liu W, Liang T, Ma F. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process. Bioresour Technol. 2020;315:123854. https://doi.org/10.1016/j.biortech.2020.123854.

    Article  CAS  Google Scholar 

  78. Liu J, Tao Y, Wu J, Zhu Y, Gao B, Tang Y, et al. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. Bioresour Technol. 2014;167:367–75. https://doi.org/10.1016/j.biortech.2014.06.036.

    Article  CAS  Google Scholar 

  79. Huang Y, Wei C, Liao Q, Xia A, Zhu X, Zhu X. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: regulating microalgae flocculation performance by pH. Bioresour Technol. 2019;276:133–9. https://doi.org/10.1016/j.biortech.2018.12.072.

    Article  CAS  Google Scholar 

  80. Sun P, Hui C, Bai N, Yang S, Wan L, Zhang Q, et al. Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Sci Rep. 2015;5:17465. https://doi.org/10.1038/srep17465.

    Article  CAS  Google Scholar 

  81. Bosshard F, Bucheli M, Meur Y, Egli T. The respiratory chain is the cell’s Achilles’ heel during UVA inactivation in Escherichia coli. Microbiology. 2010;156(7):2006. https://doi.org/10.1099/mic.0.038471-0.

    Article  CAS  Google Scholar 

  82. Nuutila AM, Aura AM, Kiesvaara M, Kauppinen V. The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. J Biotechnol. 1997;55(1):55–63.

    Article  CAS  Google Scholar 

  83. Tang CC, Tian Y, Liang H, Zuo W, Wang ZW, Zhang J, et al. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor. Bioresour Technol. 2018;250:185–90. https://doi.org/10.1016/j.biortech.2017.11.028.

    Article  CAS  Google Scholar 

  84. Zhou JH, Yu HC, Ye KQ, Wang HY, Ruan YJ, Yu JM. Optimized aeration strategies for nitrogen removal efficiency: application of end gas recirculation aeration in the fixed bed biofilm reactor. Environ Sci Pollut Res. 2019. https://doi.org/10.1007/s11356-019-06050-9.

    Article  Google Scholar 

  85. Zhang H, Gong W, Bai L, Chen R, Zeng W, Yan Z, et al. Aeration-induced CO2 stripping, instead of high dissolved oxygen, have a negative impact on algae–bacteria symbiosis (ABS) system stability and wastewater treatment efficiency. Chem Eng J. 2020;382:122957. https://doi.org/10.1016/j.cej.2019.122957.

    Article  CAS  Google Scholar 

  86. Tang CC, Zuo W, Tian Y, Sun N, Wang ZW, Zhang J. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors. Bioresour Technol. 2016;222:156–64. https://doi.org/10.1016/j.biortech.2016.09.123.

    Article  CAS  Google Scholar 

  87. Guo CL, Wang W, Duan DR, Zhao CY, Guo FQ. Enhanced CO2 biofixation and protein production by microalgae biofilm attached on modified surface of nickel foam. Bioproc Biosyst Eng. 2019;42(4):521–8. https://doi.org/10.1007/s00449-018-2055-4.

    Article  CAS  Google Scholar 

  88. Guo CL, Duan DR, Sun YH, Han YY, Zhao S. Enhancing Scenedesmus obliquus biofilm growth and CO2 fixation in a gas-permeable membrane photobioreactor integrated with additional rough surface. Algal Res. 2019;43:101620. https://doi.org/10.1016/j.algal.2019.101620.

    Article  Google Scholar 

  89. Yadav G, Dubey BK, Sen R. A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J Clean Prod. 2020;258:120703. https://doi.org/10.1016/j.jclepro.2020.120703.

    Article  CAS  Google Scholar 

  90. Ji B, Liu C. CO2 improves the microalgal-bacterial granular sludge towards carbon-negative wastewater treatment. Water Res. 2022;208:117865. https://doi.org/10.1016/j.watres.2021.117865.

    Article  CAS  Google Scholar 

  91. Kundral S, Mudragada R, Coro E, Moncholi M, Mora N, Laha S, et al. Improving settling characteristics of pure oxygen activated sludge by stripping of carbon dioxide. Water Environ Res. 2015;87(6):498–505. https://doi.org/10.2175/106143015x14212658614595.

    Article  CAS  Google Scholar 

  92. Zhang H, Gong W, Jia B, Zeng W, Li G, Liang H. Nighttime aeration mode enhanced the microalgae-bacteria symbiosis (ABS) system stability and pollutants removal efficiencies. Sci Total Environ. 2020;743:140607. https://doi.org/10.1016/j.scitotenv.2020.140607.

    Article  CAS  Google Scholar 

  93. Abe SI, Nagumo T, Tanaka J. Effects of current on the development of loosely and tightly attached layers in periphyton communities. Phycol Res. 2010;48(4):261–5. https://doi.org/10.1046/j.1440-1835.2000.00209.x.

    Article  Google Scholar 

  94. Chang J, He X, Bai X, Yuan C. The impact of hydrodynamic shear force on adhesion morphology and biofilm conformation of Bacillus sp. Ocean Eng. 2020;197:106860. https://doi.org/10.1016/j.oceaneng.2019.106860.

    Article  Google Scholar 

  95. Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T. Significance of microalgal- bacterial interactions for aquaculture. Rev Aquacult. 2014;6(1):48–61. https://doi.org/10.1111/raq.12024.

    Article  Google Scholar 

  96. Chen Z, Li L, Hao L, Hong Y, Wang W. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics. Front Env Sci Eng. 2022;16(1):2. https://doi.org/10.1007/s11783-021-1436-0.

    Article  CAS  Google Scholar 

  97. Tan XB, Yang LB, Zhang WW, Zhao XC. Lipids production and nutrients recycling by microalgae mixotrophic culture in anaerobic digestate of sludge using wasted organics as carbon source. Bioresour Technol. 2020;297:122379. https://doi.org/10.1016/j.biortech.2019.122379.

    Article  CAS  Google Scholar 

  98. Nam K, Lee H, Heo SW, Yong KC, Han JI. Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. J Appl Phycol. 2017:1171–1178. https://doi.org/10.1007/s10811-016-0987-0.

  99. Anbalagan A, Schwede S, Lindberg CF, Nehrenheim E. Influence of iron precipitated condition and light intensity on microalgae activated sludge based wastewater remediation. Chemosphere. 2017;168:1523–30. https://doi.org/10.1016/j.chemosphere.2016.11.161.

    Article  CAS  Google Scholar 

  100. Liu XY, Hong Y. Microalgae-based wastewater treatment and recovery with biomass and value-added products: a brief review. Curr Pollut Rep. 2021;7(2):227–45. https://doi.org/10.1007/s40726-021-00184-6.

    Article  CAS  Google Scholar 

  101. Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012;3. https://doi.org/10.3389/fmicb.2012.00399.

  102. Field KG, Scott TM. Microbial source tracking: current methodology and future directions. Appl Environ Microb. 2002;68(12):5796–803. https://doi.org/10.1128/AEM.68.12.5796-5803.2002.

    Article  CAS  Google Scholar 

  103. Alkan U, Eleren SC, Nalbur BE, Odabas E. Influence of the activated sludge system configuration on heavy metal toxicity reduction. World J Microb Biot. 2008;24(8):1435–43. https://doi.org/10.1007/s11274-007-9629-7.

    Article  CAS  Google Scholar 

  104. Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO. Heavy metal detoxification in eukaryotic microalgae. Chemosphere. 2006;64(1):1–10. https://doi.org/10.1016/j.chemosphere.2005.11.024.

    Article  CAS  Google Scholar 

  105. Lv J, Wang X, Feng J, Liu Q, Nan F, Liu X, et al. Biomass production and nutrients removal from non-sterile municipal wastewater and cattle farm wastewater inoculated with Chlorococcum sp. GD J Chem Technol Biotechnol. 2019;94(8):2580–8. https://doi.org/10.1002/jctb.6054.

    Article  CAS  Google Scholar 

  106. Ahmed MA, Hussein Z, Simon J. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environ Technol. 2016;38(1):94–102. https://doi.org/10.1080/09593330.2016.1186227.

    Article  CAS  Google Scholar 

  107. Su Y, Mennerich A, Urban B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios. Bioresour Technol. 2012;105:67–73. https://doi.org/10.1016/j.biortech.2011.11.113.

    Article  CAS  Google Scholar 

  108. Li D, Liu R, Cui X, He M, Wang C. Co-culture of bacteria and microalgae for treatment of high concentration biogas slurry. J Water Process Eng. 2021;41:102014. https://doi.org/10.1016/j.jwpe.2021.102014.

    Article  Google Scholar 

  109. Zhu S, Qin L, Feng P, Shang C, Wang Z, Yuan Z. Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor. Bioresour Technol. 2019;274:313–20. https://doi.org/10.1016/j.biortech.2018.10.034.

    Article  CAS  Google Scholar 

  110. Zhi G, Tong YW. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J Appl Phycol. 2014;26(3):1483–92. https://doi.org/10.1007/s10811-013-0186-1.

    Article  CAS  Google Scholar 

  111. Arcila JS, Céspedes D, Buitrón G. Influence of the wavelength photoperiods and N/P ratio on wastewater treatment with microalgae-bacteria. Water Sci Technol. 2021. https://doi.org/10.2166/wst.2021.257.

    Article  Google Scholar 

  112. Cheng P, Wang Y, Liu T, Liu D. Biofilm attached cultivation of Chlorella pyrenoidosa is a developed system for swine wastewater treatment and lipid production. Front Plant Sci. 2017;8:1594. https://doi.org/10.3389/fpls.2017.01594.

    Article  Google Scholar 

  113. Montano SAD, Orta Ledesma MT, Monje Ramirez I, Yanez Noguez I, Luna Pabello VM, Velasquez-Orta SB. A non-sterile heterotrophic microalgal process for dual biomass production and carbon removal from swine wastewater. Renew Energ. 2022;181:592–603. https://doi.org/10.1016/j.renene.2021.09.028.

    Article  CAS  Google Scholar 

  114. AlMomani FA, Ormeci B. Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol Eng. 2016;95:280–9. https://doi.org/10.1016/j.ecoleng.2016.06.038.

    Article  Google Scholar 

  115. • Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T. Integrating microalgae into wastewater treatment: A review. Sci Total Environ. 2021;752:142168. https://doi.org/10.1016/j.scitotenv.2020.142168. This review specifically summarizes the carbon, nitrogen, and phosphorus metabolisms in microalgae in depth.

  116. Falkowski PG, Raven JA. Aquatic photosynthesis ((Second Edition)) || 1. An Introduction to Photosynthesis in Aquatic Systems. 2013; 1–43. https://doi.org/10.1515/9781400849727.1.

  117. Fallahi A, Rezvani F, Asgharnejad H, Nazloo EK, Hajinajaf N, Higgins B. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review. Chemosphere. 2021;272. https://doi.org/10.1016/j.chemosphere.2021.129878.

  118. • Tang CC, Zhang X, He ZW, Tian Y, Wang XC. Role of extracellular polymeric substances on nutrients storage and transfer in algal-bacteria symbiosis sludge system treating wastewater. Bioresour Technol. 2021;331:125010. https://doi.org/10.1016/j.biortech.2021.125010. This article reports the role and significance of EPS on nutrients storage and transfer in an algal-bacteria symbiosis sludge system for wastewater treatment.

  119. Borowitzka MA, Beardall J, Raven JA. The Physiology of Microalgae. Developments Appl Phycol. 2016. https://doi.org/10.1007/978-3-319-24945-2.

    Article  Google Scholar 

  120. Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Jefferson B. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev. 2015;4(1):1–16. https://doi.org/10.1080/21622515.2015.1105308.

    Article  CAS  Google Scholar 

  121. Luis Fuentes J, Garbayo I, Cuaresma M, Montero Z, Gonzalez-del-Valle M, Vilchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs. 2016;14(5). https://doi.org/10.3390/md14050100.

  122. Gao Y, Jiang XQ, Lin DJ, Chen YH, Tong ZC. The starvation resistance and biofilm formation of Enterococcus faecalis in coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus. J Endod. 2016;42(8):1233–8. https://doi.org/10.1016/j.joen.2016.05.002.

    Article  Google Scholar 

  123. Xu Y, Wu Y, Esquivel-Elizondo S, Dolfing J, Rittmann BE. Using microbial aggregates to entrap aqueous phosphorus. Trends Biotechnol. 2020;38(11):1292–303. https://doi.org/10.1016/j.tibtech.2020.03.012.

    Article  CAS  Google Scholar 

  124. Fallahi A, Rezvani F, Asgharnejad H, et al. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review. Chemosphere. 2021;129878. https://doi.org/10.1016/j.chemosphere.2021.129878.

  125. Wang QC, Prasad R, Higgins BT. Aerobic bacterial pretreatment to overcome algal growth inhibition on high-strength anaerobic digestates. Water Res. 2019;162:420–6. https://doi.org/10.1016/j.watres.2019.07.011.

    Article  CAS  Google Scholar 

  126. Rezvani F, Sarrafzadeh MH. Autotrophic granulation of hydrogen consumer denitrifiers and microalgae for nitrate removal from drinking water resources at different hydraulic retention times. J Environ Manag. 2020;268:110674. https://doi.org/10.1016/j.jenvman.2020.110674.

    Article  CAS  Google Scholar 

  127. Bankston E, Wang QC, Higgins BT. Algae support populations of heterotrophic, nitrifying, and phosphate-accumulating bacteria in the treatment of poultry litter anaerobic digestate. Chem Eng J. 2020;398:125550. https://doi.org/10.1016/j.cej.2020.125550.

    Article  CAS  Google Scholar 

  128. Wang S, Ji B, Zhang M, Gu J, Ma Y, Liu Y. Tetracycline-induced decoupling of symbiosis in microalgal-bacterial granular sludge. Environ Res. 2021;197:111095. https://doi.org/10.1016/j.envres.2021.111095.

    Article  CAS  Google Scholar 

  129. Wang S, Ji B, Cui B, Ma Y, Guo D, Liu Y. Cadmium-effect on performance and symbiotic relationship of microalgal-bacterial granules. J Clean Prod. 2021;282:125383. https://doi.org/10.1016/j.jclepro.2020.125383.

    Article  CAS  Google Scholar 

  130. Wang S, Ji B, Zhang M, Ma Y, Gu J, Liu Y. Defensive responses of microalgal-bacterial granules to tetracycline in municipal wastewater treatment. Bioresour Technol. 2020;312:123605. https://doi.org/10.1016/j.biortech.2020.123605.

    Article  CAS  Google Scholar 

  131. Christenson LB, Sims RC. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng. 2012;109(7):1674–84. https://doi.org/10.1016/j.biortech.2014.03.001.

    Article  CAS  Google Scholar 

  132. Mohsenpour FS, Willoughby N. Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass Bioenerg. 2016. https://doi.org/10.1016/j.biombioe.2015.12.002.

    Article  Google Scholar 

  133. Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels RH. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng. 2015;111(12). https://doi.org/10.1002/bit.25301.

  134. Xu XQ, Wang JH, Zhang TY, Dao GH, Wu GX, Hu HY. Attached microalgae cultivation and nutrients removal in a novel capillary-driven photo-biofilm reactor. Algal Res. 2017;27:198–205. https://doi.org/10.1016/j.algal.2017.08.028.

    Article  Google Scholar 

  135. Luo Y, Le-Clech P, Henderson RK. Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Res. 2018;138:169–80. https://doi.org/10.1016/j.watres.2018.03.050.

    Article  CAS  Google Scholar 

  136. Sun L, Ma J, Li L, Tian Y, Zhang Z, Liao H, et al. Exploring the essential factors of performance improvement in sludge membrane bioreactor technology coupled with symbiotic algae. Water Res. 2020;181:115843. https://doi.org/10.1016/j.watres.2020.115843.

    Article  CAS  Google Scholar 

  137. Schultze LKP, Simon MV, Li T, Langenbach D, Podola B, Melkonian M. High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Res. 2015;8:37–44. https://doi.org/10.1016/j.algal.2015.01.007.

    Article  Google Scholar 

  138. Su Y, Mennerich A, Urban B. The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment. Bioresour Technol. 2016;218:1249–52. https://doi.org/10.1016/j.biortech.2016.06.099.

    Article  CAS  Google Scholar 

  139. Salvi KP, Oliveira WS, Horta PA, Rrig LR, Eduardo D. A new model of Algal Turf Scrubber for bioremediation and biomass production using seaweed aquaculture principles. J Appl Phycol. 2021. https://doi.org/10.1007/s10811-021-02430-2.

    Article  Google Scholar 

  140. Cheng P, Chen D, Liu W, Cobb K, Zhou N, Liu Y, et al. Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. Sci Total Environ. 2020;725. https://doi.org/10.1016/j.scitotenv.2020.138263.

  141. Liu XY, Hong Y, Zhao GP, Zhang HK, Zhai QY, Wang Q. Microalgae-based swine wastewater treatment: Strain screening, conditions optimization, physiological activity and biomass potential. Sci Total Environ. 2021;807(Pt 3):151008. https://doi.org/10.1016/j.scitotenv.2021.151008.

    Article  CAS  Google Scholar 

  142. Liu XY, Hong Y, Gu WP. Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. J Water Reuse Desal. 2021;11(2):301–11. https://doi.org/10.2166/wrd.2021.088.

    Article  CAS  Google Scholar 

  143. Li LH, Li XY, Hong Y, Jiang MR, Lu SL. Use of microalgae for the treatment of black and odorous water: Purification effects and optimization of treatment conditions. Algal Res. 2020;47:101851. https://doi.org/10.1016/j.algal.2020.101851.

    Article  Google Scholar 

  144. Sakimoto KK, Wong BA, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 2016;351(6268). https://doi.org/10.1126/science.aad3317.

  145. • Fischer F. Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sust Energ Rev. 2018;90:16–27. https://doi.org/10.1016/j.rser.2018.03.053. This article reviews the combination of photovoltaic cells (PECs) and microbial fuel cells (MFCs) with promising future development of microalgae.

Download references

Funding

This research is funded by the National Natural Science Foundation of China (No. 52071030) and National Key Research and Development Program of China (No. 2021YFC3200602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Human and Animal Rights and Informed Consent

This article does not contain any study with human and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hong, Y. Microalgae Biofilm and Bacteria Symbiosis in Nutrient Removal and Carbon Fixation from Wastewater: a Review. Curr Pollution Rep 8, 128–146 (2022). https://doi.org/10.1007/s40726-022-00214-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00214-x

Keywords

Navigation