Skip to main content

Advertisement

Log in

Effects of Urban Heat Islands on Temperate Forest Trees and Arthropods

  • Forest Entomology (B Castagneyrol, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Our goal is to provide an overview of how urban heat islands affect forests and synthesize recent literature on that topic. We focused on direct effects of high temperatures from urban heat islands on forest trees and indirect effects via changes in soil moisture and pest density. We also focused on the effects of urban heat islands on arthropods with particular emphasis on tree pests.

Recent Findings

Urban heat islands can push trees and arthropods closer to their thermal limits with consequences for tree growth and arthropod fitness. Urban heat islands can alter the distribution of trees and arthropods allowing species to survive at higher altitudes or latitudes than they could otherwise. A primary risk for trees is that urban heat islands can increase pest density and damage.

Summary

Urban heat islands can increase forest air and soil temperature and reduce soil moisture especially when combined with greater climate change. Land managers should consider the surrounding urban density and forest size when trying to determine which plants and animals can persist in urban forests. As forests are fragmented or encroached upon by urbanization, the forest environment will change and become more hospitable for some species and less hospitable for others. Overall, there is insufficient research focused on urban-forest interfaces and the consequences of urbanization for plants and animals within forests. This research is not only important for urban forest conservation. Tree and arthropod responses to urban heat islands will help scientists and land managers predict responses to climate warming in rural areas as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ewing R, Kostyack J, Chen D, Stein B, Ernst M. Endangered by sprawl: how runaway development threatens America’s wildlife. Washington, D.C: National Wildlife Federation, Smart Growth America, and NatureServe; 2005. https://www.nwf.org/~/media/PDFs/Wildlife/EndangeredBySprawl.ashx.

  2. Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci. 2012;109(40):16083–8.

    Article  CAS  Google Scholar 

  3. Ives CD, Lentini PE, Threlfall CG, Ikin K, Shanahan DF, Garrard GE, et al. Cities are hotspots for threatened species. Glob Ecol Biogeogr. 2016;25(1):117–26.

    Article  Google Scholar 

  4. Muller A, Bocher PK, Fischer C, Svenning JC. ‘Wild’ in the city context: do relative wild areas offer opportunities for urban biodiversity? Landsc Urban Plan. 2018;170:256–65.

    Article  Google Scholar 

  5. Beninde J, Veith M, Hochkirch A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett. 2015;18(6):581–92.

    Article  Google Scholar 

  6. Oke TR. City size and the urban heat island. Atmos Environ. 1973;7:769–79.

    Article  Google Scholar 

  7. Seto KC, Shepherd JM. Global urban land-use trends and climate impacts. Curr Opin Environ Sustain. 2009;1(1):89–95.

    Article  Google Scholar 

  8. Arnfield AJ. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol. 2003;23(1):1–26.

    Article  Google Scholar 

  9. Larsen L. Urban climate and adaptation strategies. Front Ecol Environ. 2015;13(9):486–92.

    Article  Google Scholar 

  10. Tran H, Uchihama D, Ochi S, Yasuoka Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf. 2006;8(1):34–48.

    Google Scholar 

  11. Cao X, Onishi A, Chen J, Imura H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc Urban Plan. 2010;96(4):224–31.

    Article  Google Scholar 

  12. Howe DA, Hathaway JM, Ellis KN, Mason LR. Spatial and temporal variability of air temperature across urban neighborhoods with varying amounts of tree canopy. Urban For Urban Green. 2017;27:109–16.

    Article  Google Scholar 

  13. Wang JA, Hutyra LR, Li D, Friedl MA. Gradients of atmospheric temperature and humidity controlled by local urban land-use intensity in Boston. J Appl Meteorol Climatol. 2017;56(4):817–31.

    Article  Google Scholar 

  14. Carreiro MM, Tripler CE. Forest remnants along urban-rural gradients: examining their potential for global change research. Ecosystems. 2005;8(5):568–82.

    Article  Google Scholar 

  15. Sonti NF, Hallett RA, Griffin KL, Sullivan JH. White oak and red maple tree ring analysis reveals enhanced productivity in urban forest patches. For Ecol Manag. 2019;453:117626.

  16. O’Brien AM, Ettinger AK, HilleRisLambers J. Conifer growth and reproduction in urban forest fragments: predictors of future responses to global change? Urban Ecosyst. 2012;15(4):879–91.

    Article  Google Scholar 

  17. Ren Z, He X, Zheng H, Zhang D, Yu X, Shen G, et al. Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement. Forests. 2013;4(4):868–86.

    Article  Google Scholar 

  18. Reinmann AB, Smith IA, Thompson JR, Hutyra LR. Urbanization and fragmentation mediate temperate forest carbon cycle response to climate. Environ Res Lett. 2020;15(11):114036.

    Article  CAS  Google Scholar 

  19. Fuller DO. Forest fragmentation in Loudoun County, Virginia, USA evaluated with multitemporal Landsat imagery. Landscape Ecol. 2001;16(7):627–42.

    Article  Google Scholar 

  20. Long LC, D'Amico V, Frank SD. Urban forest fragments buffer trees from warming and pests. Sci Total Environ. 2019;658:1523–30.

  21. Imhoff ML, Zhang P, Wolfe RE, Bounoua L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ. 2010;114(3):504–13.

    Article  Google Scholar 

  22. Yuan F, Bauer ME. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ. 2007;106(3):375–86.

    Article  Google Scholar 

  23. Zhou D, Zhao S, Liu S, Zhang L, Zhu C. Surface urban heat island in China’s 32 major cities: spatial patterns and drivers. Remote Sens Environ. 2014;152:51–61.

    Article  Google Scholar 

  24. Schatz J, Kucharik CJ. Seasonality of the urban heat island effect in Madison, Wisconsin. J Appl Meteorol Climatol. 2014;53(10):2371–86.

    Article  Google Scholar 

  25. Rogan J, Ziemer M, Martin D, Ratick S, Cuba N, DeLauer V. The impact of tree cover loss on land surface temperature: a case study of central Massachusetts using Landsat Thematic Mapper thermal data. Appl Geogr. 2013;45:49–57.

    Article  Google Scholar 

  26. Choi H-A, Lee W-K, Byun W-H. Determining the effect of green spaces on urban heat distribution using satellite imagery. Asian J Atmos Environ. 2012;6(2):127–35.

    Article  Google Scholar 

  27. Li XM, Zhou WQ, Ouyang ZY, Xu WH, Zheng H. Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area. China Landsc Ecol. 2012;27(6):887–98.

    Article  Google Scholar 

  28. Ren ZB, He XY, Pu RL, Zheng HF. The impact of urban forest structure and its spatial location on urban cool island intensity. Urban Ecosyst. 2018;21(5):863–74.

    Article  Google Scholar 

  29. Jenerette GD, Harlan SL, Stefanov WL, Martin CA. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol Appl. 2011;21(7):2637–51.

    Article  Google Scholar 

  30. Gómez-Navarro C, Pataki DE, Pardyjak ER, Bowling DR. Effects of vegetation on the spatial and temporal variation of microclimate in the urbanized Salt Lake Valley. Agric For Meteorol. 2021;296:108211.

    Article  Google Scholar 

  31. Zhou W, Huang G, Cadenasso ML. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan. 2011;102(1):54–63.

    Article  Google Scholar 

  32. Chen A, Yao XA, Sun R, Chen L. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For Urban Green. 2014;13(4):646–54.

    Article  Google Scholar 

  33. Li X, Zhou Y, Asrar GR, Imhoff M, Li X. The surface urban heat island response to urban expansion: a panel analysis for the conterminous United States. Sci Total Environ. 2017;605:426–35.

    Article  Google Scholar 

  34. Gallo KP, Owen TW. Satellite-based adjustments for the urban heat island temperature bias. J Appl Meteorol. 1999;38(6):806–13.

    Article  Google Scholar 

  35. Sun Y, Gao C, Li J, Wang R, Liu J. Evaluating urban heat island intensity and its associated determinants of towns and cities continuum in the Yangtze River Delta Urban Agglomerations. Sustain Cities Soc. 2019;50:101659.

    Article  Google Scholar 

  36. Oke TR, Crowther J, McNaughton K, Monteith J, Gardiner B. The micrometeorology of the urban forest [and discussion]. Philos Trans Royal Soc B: Biol Sci. 1989;324(1223):335–49.

    Google Scholar 

  37. Sánchez-Echeverría K, Castellanos I, Mendoza-Cuenca L, Zuria I, Sánchez-Rojas G. Reduced thermal variability in cities and its impact on honey bee thermal tolerance. PeerJ. 2019;7:e7060.

    Article  Google Scholar 

  38. Scott AA, Waugh DW, Zaitchik BF. Reduced urban heat island intensity under warmer conditions. Environ Res Lett. 2018;13(6):064003.

    Article  Google Scholar 

  39. Edmondson JL, Stott I, Davies ZG, Gaston KJ, Leake JR. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Sci Rep. 2016;6(1):1–8.

    Article  Google Scholar 

  40. Li Y, Kang W, Han Y, Song Y. Spatial and temporal patterns of microclimates at an urban forest edge and their management implications. Environ Monit Assess. 2018;190(2):1–13.

    Article  Google Scholar 

  41. Arroyo-Rodríguez V, Saldana-Vazquez RA, Fahrig L, Santos BA. Does forest fragmentation cause an increase in forest temperature? Ecol Res. 2017;32(1):81–8.

    Article  Google Scholar 

  42. Cadenasso ML, Pickett ST, Weathers KC, Jones CG. A framework for a theory of ecological boundaries. Bioscience. 2003;53(8):750–8.

    Article  Google Scholar 

  43. Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, et al. Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience. 1999;49(4):288–97.

    Article  Google Scholar 

  44. Miller DR, editor Structure of the microclimate at a woodland/parking-lot interface. Proc Conference on metropolitan physical environment, USDA Forest Service General Technical Report, NE-25; 1977.

  45. Schmidt M, Jochheim H, Kersebaum K-C, Lischeid G, Nendel C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes–a review. Agric For Meteorol. 2017;232:659–71.

    Article  Google Scholar 

  46. Searle SY, Turnbull MH, Boelman NT, Schuster WS, Yakir D, Griffin KL. Urban environment of New York City promotes growth in northern red oak seedlings. Tree Physiol. 2012;32(4):389–400.

    Article  Google Scholar 

  47. Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y. Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res. 2013;126(4):447–60.

    Article  Google Scholar 

  48. • Harvey JE, Smiljanić M, Scharnweber T, Buras A, Cedro A, Cruz-García R, et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob Change Biol. 2020;26(4):2505–18. This important paper is one of the few that combines effects of heat and water availability on tree growth. See also ref. 54.

    Article  Google Scholar 

  49. Way DA, Oren R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 2010;30(6):669–88.

    Article  Google Scholar 

  50. •• Pretzsch H, Biber P, Uhl E, Dahlhausen J, Schütze G, Perkins D, et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci Rep. 2017;7(1):1–10. This paper presents one of the most extensive comparisons of tree growth in urban and rural forests and is exceptional for including the interactive effects of climate change.

    Article  CAS  Google Scholar 

  51. Ziska LH, Bunce JA, Goins EW. Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia. 2004;139(3):454–8.

    Article  CAS  Google Scholar 

  52. Brice M-H, Bergeron A, Pellerin S. Liana distribution in response to urbanization in temperate forests. Ecoscience. 2014;21(2):104–13.

    Article  Google Scholar 

  53. Meineke E, Youngsteadt E, Dunn RR, Frank SD. Urban warming reduces aboveground carbon storage. Proc R Soc B: Biol Sci. 2016;283(1840):20161574.

  54. • Meineke EK, Frank SD. Water availability drives urban tree growth responses to herbivory and warming. J ApplEcol 2018. This paper presents controlled and observational experiments on the combined effects of urban heat islands, water stress, and pest insects.

  55. Chen Y, Wang X, Jiang B, Wen Z, Yang N, Li L. Tree survival and growth are impacted by increased surface temperature on paved land. Landsc Urban Plan. 2017;162:68–79.

    Article  Google Scholar 

  56. Dale AG, Frank SD. The effects of urban warming on herbivore abundance and street tree condition. PLOS One. 2014;9(7):e102996.

  57. Dale AG, Youngsteadt E, Frank SD. Forecasting the effects of heat and pests on urban trees: Impervious surface thresholds and the ‘Pace to Plant’ technique. Arboricult Urban For. 2016;42:181–91.

    Google Scholar 

  58. Gillner S, Bräuning A, Roloff A. Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees. 2014;28(4):1079–93.

    Article  Google Scholar 

  59. Gillner S, Vogt J, Roloff A. Climatic response and impacts of drought on oaks at urban and forest sites. Urban For Urban Green. 2013;12(4):597–605.

    Article  Google Scholar 

  60. Lahr EC, Backe KM, Frank SD. Intraspecific variation in morphology, physiology, and ecology of wildtype relative to horticultural varieties of red maple (Acer rubrum). Trees. 2020;34(2):603–14.

  61. Lahr EC, Dunn RR, Frank SD. Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States. PLoS ONE. 2018;13(5):e0197866.

    Article  Google Scholar 

  62. Gregg JW, Jones CG, Dawson TE. Urbanization effects on tree growth in the vicinity of New York City. Nature. 2003;424(6945):179–83.

    Article  Google Scholar 

  63. Diamond SE, Chick L, Penick CA, Nichols LM, Cahan SH, Dunn RR, et al. Heat tolerance predicts the importance of species interaction effects as the climate changes. Integr Comp Biol. 2017;57(1):112–20.

    Article  Google Scholar 

  64. Diamond SE, Dunn RR, Frank SD, Haddad NM, Martin RA. Shared and unique responses of insects to the interaction of urbanization and background climate. Curr Opin Insect Sci. 2015;11:71–7.

    Article  Google Scholar 

  65. Youngsteadt E, Ernst AF, Dunn RR, Frank SD. Responses of arthropod populations to warming depend on latitude: evidence from urban heat islands. Glob Change Biol. 2017;23(4):1436–47.

    Article  Google Scholar 

  66. Angilletta MJ Jr, Wilson RS, Niehaus AC, Sears MW, Navas CA, Ribeiro PL. Urban physiology: city ants possess high heat tolerance. PLoS One. 2007;2(2):e258.

  67. Chown SL, Duffy GA. Thermal physiology and urbanization: perspectives on exit, entry and transformation rules. Funct Ecol. 2015;29(7):902–12.

    Article  Google Scholar 

  68. Hamblin AL, Youngsteadt E, López-Uribe MM, Frank SD. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol Let. 2017;13(6):20170125.

    Article  Google Scholar 

  69. Piano E, De Wolf K, Bona F, Bonte D, Bowler DE, Isaia M, et al. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob Change Biol. 2017;23(7):2554–64.

    Article  Google Scholar 

  70. Hamblin AL, Youngsteadt E, Frank SD. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 2018;21(3):419–28.

    Article  Google Scholar 

  71. Menke SB, Guénard B, Sexton JO, Weiser MD, Dunn RR, Silverman J. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 2011;14(2):135–63.

    Article  Google Scholar 

  72. Meineke EK, Holmquist AJ, Wimp GM, Frank SD. Changes in spider community composition are associated with urban temperature, not herbivore abundance. J Urban Ecol. 2017;3(1):juw010-juw.

    Article  Google Scholar 

  73. Dale AG, Frank SD. Urban plants and climate drive unique arthropod interactions with unpredictable consequences. Curr Opin Insect Sci. 2018;29:27–33.

    Article  Google Scholar 

  74. Sattler T, Borcard D, Arlettaz R, Bontadina F, Legendre P, Obrist M, et al. Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity. Ecology. 2010;91(11):3343–53.

    Article  CAS  Google Scholar 

  75. Magura T, Horváth R, Tóthmérész B. Effects of urbanization on ground-dwelling spiders in forest patches Hungary. Landsc Ecol. 2010;25(4):621–9.

    Article  Google Scholar 

  76. Baur B, Baur A. Climatic warming due to thermal radiation from an urban area as possible cause for the local extinction of a land snail. J Appl Ecol. 1993;1993:333–40.

    Article  Google Scholar 

  77. Diamond SE, Nichols LM, Pelini SL, Penick CA, Barber GW, Cahan SH, et al. Climatic warming destabilizes forest ant communities. Sci Adv. 2016;2(10):e1600842.

    Article  Google Scholar 

  78. Turrini T, Knop E. A landscape ecology approach identifies important drivers of urban biodiversity. Glob Change Biol. 2015;21(4):1652–67.

    Article  Google Scholar 

  79. McKinney ML. Urbanization as a major cause of biotic homogenization. Biol Cons. 2006;127(3):247–60.

    Article  Google Scholar 

  80. Bale J, Hayward S. Insect overwintering in a changing climate. J Exp Biol. 2010;213(6):980–94.

    Article  CAS  Google Scholar 

  81. Kaiser A, Merckx T, Van Dyck H. The urban heat island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol Evol. 2016;6(12):4129–40.

    Article  Google Scholar 

  82. Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl. 2005;15(6):2084–96.

    Article  Google Scholar 

  83. Hahn DA, Denlinger DL. Energetics of insect diapause. Annu Rev Entomol. 2011;56:103–21.

    Article  CAS  Google Scholar 

  84. Irwin JT, Lee J, Richard E. Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly Eurosta solidaginis. Oikos. 2003;100(1):71–8.

    Article  Google Scholar 

  85. Miller FD, Hart E. Overwintering survivorship of pupae of the mimosa web worm, Homadaula anisocentra (Lepidoptera: Plutellidae), in an urban landscape. Ecol Entomol. 1987;12(1):41–50.

    Article  Google Scholar 

  86. Hart E. Tree location and winter temperature influence on mimosa webworm populations in a northern urban environment. J Arboric. 1986;12:237–40.

    Google Scholar 

  87. Backe K, Rousselet J, Bernard A, Frank S, Roques A. Human health risks of invasive caterpillars increase with urban warming. Landscape Ecol. 2021;36(5):1475–87.

    Article  Google Scholar 

  88. Dukes JS, Pontius J, Orwig D, Garnas JR, Rodgers VL, Brazee N, et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can J For Res-Rev Can Rech For. 2009;39(2):231–48.

    Article  Google Scholar 

  89. Cooke BJ, Roland J. The effect of winter temperature on forest tent caterpillar (Lepidoptera: Lasiocampidae) egg survival and population dynamics in northern climates. Environ Entomol. 2003;32(2):299–311.

    Article  Google Scholar 

  90. Frank SD, Just MG. Can cities activate sleeper species and predict future forest pests? A case study of scale insects. Insects. 2020;11(3):142.

    Article  Google Scholar 

  91. Frank SD. Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems. For Int J For Res. 2021;94(2):167–80.

    Google Scholar 

  92. Battisti A, Stastny M, Buffo E, Larsson S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob Change Biol. 2006;12(4):662–71.

    Article  Google Scholar 

  93. Jepsen JU, Kapari L, Hagen SB, Schott T, Vindstad OPL, Nilssen AC, et al. Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Glob Change Biol. 2011;17(6):2071–83.

    Article  Google Scholar 

  94. Robinet C, Imbert C-E, Rousselet J, Sauvard D, Garcia J, Goussard F, et al. Human-mediated long-distance jumps of the pine processionary moth in Europe. Biol Invasions. 2011;14(8):1557–69.

    Article  Google Scholar 

  95. Robinet C, Baier P, Pennerstorfer J, Schopf A, Roques A. Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. and Schiff.)(Lep., Notodontidae) in France. Global Ecol Biogeogr. 2007;16(4):460–71.

    Article  Google Scholar 

  96. Cordonnier M, Bellec A, Escarguel G, Kaufmann B. Effects of urbanization–climate interactions on range expansion in the invasive European pavement ant. Basic Appl Ecol. 2020;44:46–54.

    Article  Google Scholar 

  97. Evans TA, Forschler BT, Trettin CC. Not just urban: the Formosan subterranean termite, Coptotermes formosanus, is invading forests in the Southeastern USA. Biol Invasions. 2019;21(4):1283–94.

    Article  Google Scholar 

  98. Trân JK, Ylioja T, Billings RF, Régnière J, Ayres MP. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecol Appl. 2007;17(3):882–99.

    Article  Google Scholar 

  99. Ungerer MJ, Ayres MP, Lombardero MJ. Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). J Biogeogr. 1999;26(6):1133–45.

    Article  Google Scholar 

  100. Meineke EK, Dunn RR, Sexton JO, Frank SD. Urban warming drives insect pest abundance on street trees. PloS One. 2013;8(3):e59687.

  101. Meineke EK, Dunn RR, Frank SD. Early pest development and loss of biological control are associated with urban warming. Biol Let. 2014;10(11):20140586.

    Article  Google Scholar 

  102. Just MG, Dale AG, Frank SD. Gloomy scale (Hemiptera: Diaspididae) ecology and management on landscape trees. J Integr Pest Manag. 2020;11(1):24.

    Article  Google Scholar 

  103. Just MG, Frank SD. Thermal tolerance of gloomy scale (Hemiptera: Diaspididae) in the eastern United States. Environ Entomol. 2020;49(1):104–14.

  104. Dale AG, Frank SD. Urban warming trumps natural enemy regulation of herbivorous pests. Ecol Appl. 2014;24(7):1596–607.

    Article  Google Scholar 

  105. Dale AG, Frank SD. Warming and drought combine to increase pest insect fitness on urban trees. PLoS ONE. 2017;12(3):e0173844.

    Article  Google Scholar 

  106. •• Youngsteadt E, Dale AG, Terando AJ, Dunn RR, Frank SD. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob Chang Biol. 2015;21(1):97–105. This paper provides one of the first and most complete comparisons between the effects of climate change and urban heat islands on an insect pest of trees.

    Article  Google Scholar 

  107. Frank SD. A survey of key arthropod pests on common southeastern street trees. Arboric Urban For. 2019;45:155–66.

  108. Raupp MJ, Shrewsbury PM, Herms DA. Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol. 2010;55:19–38.

    Article  CAS  Google Scholar 

  109. Martinson HM, Raupp MJ, Frank SD. How urban forest composition shapes the structure and function of arthropod communities. In: Urban ecology: its nature and challenges. Wallingford UK: CABI; 2020. p. 15–36.

  110. Frank SD. Bad neighbors: urban habitats increase cankerworm damage to non-host understory plants. Urban Ecosyst. 2014;17(4):1135–45.

    Article  Google Scholar 

  111. Asaro C, Chamberlin LA. Outbreak history (1953–2014) of spring defoliators impacting oak-dominated forests in Virginia, with emphasis on gypsy moth (Lymantria dispar L.) and fall cankerworm (Alsophila pometaria Harris). Am Entomol. 2015;61(3):174–85.

    Article  Google Scholar 

  112. Darr MN, Coyle DR. Fall cankerworm (Lepidoptera: Geometridae), a native defoliator of broadleaved trees and shrubs in North America. J Integr Pest Manag. 2021;12(1):23.

    Article  Google Scholar 

  113. Schowalter TD. Biology and management of the forest tent caterpillar (Lepidoptera: Lasiocampidae). J Integr Pest Manag. 2017;8(1):24.

    Article  Google Scholar 

  114. Daniel CJ, Myers JH. Climate and outbreaks of the forest tent caterpillar. Ecography. 1995;18(4):353–62.

    Article  Google Scholar 

  115. Crouch CD, Grady AM, Wilhelmi NP, Hofstetter RW, DePinte DE, Waring KM. Oystershell scale: an emerging invasive threat to aspen in the southwestern US. Biol Invasions. 2021;23(9):2893–912.

    Article  Google Scholar 

  116. Felt DE. The economic importance of shade tree insects. J Econ Entomol. 1930;23(1):109–13.

    Article  Google Scholar 

  117. Hall GG. A study of the oyster-shell scale, lepidosaphes ulmi (L.), and one of its parasites, aphelinus mytilaspidis le B. Cornell University ed; 1925. p. 93.

  118. Evans AM, Gregoire TG. A geographically variable model of hemlock woolly adelgid spread. Biol Invasions. 2007;9(4):369–82.

    Article  Google Scholar 

  119. Morin RS, Liebhold AM, Gottschalk KW. Anisotropic spread of hemlock woolly adelgid in the eastern United States. Biol Invasions. 2009;11(10):2341–50.

    Article  Google Scholar 

  120. Paradis A, Elkinton J, Hayhoe K, Buonaccorsi J. Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitig Adapt Strat Glob Change. 2008;13(5):541–54.

    Article  Google Scholar 

  121. Lahr EC, Dunn RR, Frank SD. Getting ahead of the curve: cities as surrogates for global change. Proc R Soc B. 1882;2018(285):20180643.

    Google Scholar 

  122. Furlong MJ, Zalucki MP. Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Curr Opin Insect Sci. 2017;20:39–44.

    Article  Google Scholar 

  123. Schmitz OJ, Barton BT. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol Control. 2014;75:87–96.

    Article  Google Scholar 

  124. Kalinkat G, Rall BC, Björkman C, Niemelä P. Effects of climate change on the interactions between insect pests and their natural enemies. In: Climate change and insect pests. Wallingford: CABI; 2015. p. 74–91.

  125. Kapranas A, Tena A. Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control. Annu Rev Entomol. 2015;60:195–211.

    Article  CAS  Google Scholar 

  126. Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, et al. Phenological sensitivity to climate across taxa and trophic levels. Nature. 2016;535(7611):241–5.

    Article  CAS  Google Scholar 

  127. Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J, Bährmann R, et al. Trophic levels are differentially sensitive to climate. Ecology. 2003;84(9):2444–53.

    Article  Google Scholar 

  128. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Schneider A. The footprint of urban climates on vegetation phenology. Geophys Res Lett. 2004;31(12).

  129. Li X, Zhou Y, Asrar GR, Mao J, Li X, Li W. Response of vegetation phenology to urbanization in the conterminous United States. Glob Change Biol. 2017;23(7):2818–30.

    Article  Google Scholar 

  130. Mimet A, Pellissier V, Quénol H, Aguejdad R, Dubreuil V, Roze F. Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus. Int J Biometeorol. 2009;53(3):287–98.

    Article  CAS  Google Scholar 

  131. Zipper SC, Schatz J, Singh A, Kucharik CJ, Townsend PA, Loheide SP. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environ Res Lett. 2016;11(5):054023.

    Article  Google Scholar 

  132. Renner SS, Zohner CM. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst. 2018;49:165–82.

    Article  Google Scholar 

  133. Donaldson JR, Lindroth RL. Effects of variable phytochemistry and budbreak phenology on defoliation of aspen during a forest tent caterpillar outbreak. Agric For Entomol. 2008;10(4):399–410.

    Article  Google Scholar 

  134. Hajdasz AC, Otter KA, Baldwin LK, Reudink MW. Caterpillar phenology predicts differences in timing of mountain chickadee breeding in urban and rural habitats. Urban Ecosyst. 2019;22(6):1113–22.

    Article  Google Scholar 

  135. Seress G, Hammer T, Bókony V, Vincze E, Preiszner B, Pipoly I, et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol Appl. 2018;28(5):1143–56.

    Article  Google Scholar 

  136. van Asch M, Visser ME. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol. 2007;52:37–55.

    Article  Google Scholar 

  137. Abarca M, Lill JT. Warming affects hatching time and early season survival of eastern tent caterpillars. Oecologia. 2015;179(3):901–12.

    Article  Google Scholar 

  138. Visser ME, Holleman LJ. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond B. 2001;268(1464):289–94.

    Article  CAS  Google Scholar 

  139. Chick LD, Strickler SA, Perez A, Martin RA, Diamond SE. Urban heat islands advance the timing of reproduction in a social insect. J Therm Biol. 2019;80:119–25.

    Article  Google Scholar 

  140. Diamond SE, Cayton H, Wepprich T, Jenkins CN, Dunn RR, Haddad NM, et al. Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology. 2014;95(9):2613–21.

    Article  Google Scholar 

  141. Kudo G, Ida TY. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology. 2013;94(10):2311–20.

    Article  Google Scholar 

  142. Merckx T, Nielsen ME, Heliölä J, Kuussaari M, Pettersson LB, Pöyry J, Tiainen J, Gotthard K, Kivelä SM. Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proc Natl Acad Sci. 2021;118(40):e2106006118.

Download references

Funding

Funding was provided by the United States Geological Survey (Cooperative Agreement no. G15AP00153) to SDF. Its contents are solely the responsibility of the authors and do not necessarily represent the views of the Southeast Climate Science Center or the USGS. This manuscript is submitted for publication with the understanding that the US Government is authorized to reproduce and distribute reprints for governmental purposes. Funding is also provided by United States Department of Agriculture, National Institute of Food and Agriculture (award numbers 2018–70006-28914 and 2016–70006-25827) and by the Southern IPM Center (Project S21-008) as part of USDA NIFA CPPM RCP (Agreement No. 2018–70006-28884).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Frank.

Ethics declarations

Conflict of Interest

Steven Frank and Kristi Backe declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Forest Entomology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, S.D., Backe, K.M. Effects of Urban Heat Islands on Temperate Forest Trees and Arthropods. Curr Forestry Rep 9, 48–57 (2023). https://doi.org/10.1007/s40725-022-00178-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-022-00178-7

Keywords

Navigation