Skip to main content
Log in

Pathogens of the Araucariaceae: How Much Do We Know?

  • Forest Pathology (J Witzell, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The Araucariaceae is a family of ancient conifers containing iconic tree species from diverse parts of the world. Thirty-eight extant species are present in three genera. Extensive reduction of natural populations has occurred for many species of Araucariaceae, largely due to anthropogenic disturbances. This has occurred to the extent where most species are classified at some level of extinction risk. In recent decades, several diseases have emerged on trees in the family, which has highlighted a general lack of knowledge regarding the factors impacting the health of Araucariaceae. We addressed this by compiling all available literature regarding pathogens and diseases of the Araucariaceae. Insights are given into how globalization and climate change may have, and will potentially, play a role in the emergence of current and future disease threats. These threats are considered from both an ecological and economic perspective.

Recent Findings

A total of 227 disease reports were found for the family (58 for Agathis, 161 for Araucaria and eight for Wollemia), of which 88% related to only eight tree species. Consequently, there was a considerable number of species in the Araucariaceae for which no disease reports were found. The most prevalent pathogens reported were species of Phytophthora, root rotting basidiomycetes such as Phellinus or Armillaria, and pathogens within the Botryosphaeriaceae. However, only 25% of the pathogens found have had their pathogenicity confirmed through tests, and only 22% have had their identity confirmed through DNA sequencing, making evident the limited amount of research carried out on this topic.

Summary

There is a general lack of baseline information on diseases for trees in the Araucariaceae. The effects that pathogens have had, and may have in the future, in this iconic family of trees are concerning as most of the species have been declared at some level of risk of preservation. Both globalization and climate change have indicated the potential effects they can have, and how unpredictable they can be. This lack of a solid baseline understanding may become an important constraint on attempts to preserve these species, and thus, it is evident that research efforts on these topics are much needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van Lierop P, Lindquist E, Sathyapala S, Franceschini G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For Ecol Manage. 2015;352:78–88.

    Article  Google Scholar 

  2. Kliejunas JT. A risk assessment of climate change and the impact of forest diseases on forest ecosystems in the Western United States and Canada. General Technical Report PSW-GTR-236. Albany, CA: USDA-Forest Service, Pacific Southwest Research Station. 2011;236:1–70.

  3. Enderle R, Stenlid J, Vasaitis R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. 2019;14:1–12.

    Article  Google Scholar 

  4. Burgess TI, Scott JK, Mcdougall KL, Stukely MJ, Crane C, Dunstan WA, et al. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob Change Biol. 2017;23:1661–74.

    Article  Google Scholar 

  5. Rizzo DM, Garbelotto M. Sudden oak death: endangering California and Oregon forest ecosystems. Front Ecol Environ. 2003;1:197–204.

    Article  Google Scholar 

  6. Wingfield M, Brockerhoff E, Wingfield BD, Slippers B. Planted forest health: the need for a global strategy. Science. 2015;349:832–6.

    Article  CAS  Google Scholar 

  7. • Hennon PE, Frankel SJ, Woods AJ, Worrall JJ, Norlander D, Zambino PJ, et al. A framework to evaluate climate effects on forest tree diseases. Forest Pathology. 2020;50:e12649. This review presents a conceptual framework on how to adequately assess the effects of climate on diseases of forest at different temporal/spatial scales and explains the most common scenarios in which climate drives the emergence of disease.

  8. Balocchi F, Wingfield MJ, Ahumada R, Barnes I. Pewenomyces kutranfy gen nov. et sp. nov. causal agent of an important canker disease on Araucaria araucana in Chile. Plant Pathol. 2021;70:1243–59.

    Article  Google Scholar 

  9. Vélez ML, Marfetán JA, Salgado Salomón ME, Taccari LE. Mortierella species from declining Araucaria araucana trees in Patagonia, Argentina. For Pathol. 2020;50:e12591.

  10. Veblen TT, Delmastro R. The Araucaria araucana gene resource in Chile. For Genet Resour Inf. 1976;5:2–6.

    Google Scholar 

  11. Rodriguez R, Matthei S, Quezada MM. Flora arbórea de Chile. Santiago de Chile: Editorial de la Universidad de Concepción; 1983.

  12. Mundo IA, Kitzberger T, Juñent FR, Villalba R, Barrera MD. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int J Wildland Fire. 2013;22:194–206.

    Article  Google Scholar 

  13. González ME, Veblen TT, Sibold JS. Fire history of Araucaria-Nothofagus forests in Villarrica National Park. Chile J Biogeogr. 2005;32:1187–202.

    Article  Google Scholar 

  14. Zamorano-Elgueta C, Cayuela L, González-Espinosa M, Lara A, Parra-Vázquez MR. Impacts of cattle on the South American temperate forests: challenges for the conservation of the endangered monkey puzzle tree (Araucaria araucana) in Chile. Biol Cons. 2012;152:110–8.

    Article  Google Scholar 

  15. Shuey LS, Pegg K, Dodd S, Manners AG, White D, Burgess TI, et al. Araucaria dieback-a threat to native and plantation forests. In: Edwards J, editor., et al., Australasian Plant Pathology Society Conference APPS 2019 Conference handbook. Melbourne: ICMS Australasia; 2019. p. 274.

    Google Scholar 

  16. Benson M. Dieback of Norfolk Island pine in its natural environment. Aust For. 1980;43:245–52.

    Article  Google Scholar 

  17. Francis JK. Araucaria heterophylla (Salisb.) Franco Araucaria, Norfolk Island-pine. In: Francis JK, Lowe CA, editors. Bioecología de Arboles Nativos y Exóticos de Puerto Rico y las Indias Occidentales, General Technical Report IITF-15. Río Piedras, Puerto Rico: International Institute of Tropical Forestry; 2000. pp. 49–52.

  18. • Mazur MA, Tron F, Mille C. Pactola kuscheli sp. nov. (Coleoptera: Curculionidae), a potential cause for the decline of the threatened New Caledonian conifer, Agathis montana de Laubenfels 1969 (Araucariaceae). Austral Entomol. 2017;56:268–76. This article includes a concise description of the decline disease that emerged on Agathis montana and the factors that play a role in the poor status of these trees.

  19. Casola JH, Tron FM. Interannual precipitation and temperature variability near Mt. Panié Wilderness Reserve and its connection to Kauri (Agathis montana) die-back. In: Tron F, Franquet R, Larsen T, Cassan J, editors. Evaluation rapide de la biodiversité du massif du Panié et des Roches de la Ouaième, province Nord, Nouvelle-Calédonie. Arlington: Conservation International; 2013. pp. 139–45.

  20. Silba J. An international census of the Coniferae, I. Phytologia Memoirs VII. Plainfield, NJ: H.N & A.L Moldenke; 1984.

  21. Farjon A. A handbook of the world’s conifers, vol. 1. Leiden: Brill Academic Publishers; 2010.

    Book  Google Scholar 

  22. Farjon A. A handbook of the world’s conifers, vol. 2. Leiden: Brill Academic Publishers; 2010.

    Book  Google Scholar 

  23. Whitmore TC (British Ministry of Overseas Development). A first look at Agathis. Oxford: Tropical Forestry Papers. Department of Forestry Oxford University; 1977. Report No.: R2881.

  24. Ecroyd C. Biological flora of New Zealand 8. Agathis australis (D. Don) Lindl. (Araucariaceae) Kauri. N Z J Bot. 1982;20:17–36.

    Article  Google Scholar 

  25. Aguilera-Betti I, Muñoz AA, Stahle D, Figueroa G, Duarte F, González-Reyes Á, et al. The first millennium-age Araucaria araucana in Patagonia. Tree-Ring Res. 2017;73:53–6.

    Article  Google Scholar 

  26. Palmer J, Lorrey A, Turney CSM, Hogg A, Baillie M, Fifield K, et al. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into oxygen isotope stage (OIS) 3. J Quat Sci. 2006;21:779–87.

    Article  Google Scholar 

  27. Enright NJ, Ogden J. The southern conifers - a synthesis. In: Enright NJ, Hill RS, editors. Ecology of the southern conifers. Carlton: Melbourne University Press; 1995. p. 271–87.

    Google Scholar 

  28. Christenhusz MJ, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW. A new classification and linear sequence of extant gymnosperms. Phytotaxa. 2011;19:55–70.

    Article  Google Scholar 

  29. • Escapa IH, Catalano SA. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences. 2013;174:1153–70. This paper deals with the taxonomic arrangement of the Araucariaceae using DNA sequence, morphological traits and fossils giving a robust phylogeny for the family.

  30. Endlicher SFL. Synopsis coniferarum. Sangalli: Apud Scheittin et Zollikofer; 1847.

  31. Wilde MH, Eames AJ. The ovule and ‘seed’ of Araucaria bidwilli with discussion of the taxonomy of the genus II. Taxonomy. Ann Bot. 1952;16:28–49.

    Article  Google Scholar 

  32. Setoguchi H, Asakawa Osawa T, Pintaud JC, Veillon JM. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. Am J Bot. 1998;85:1507–16.

    Article  CAS  Google Scholar 

  33. Ruhsam M, Rai HS, Mathews S, Ross TG, Graham SW, Raubeson LA, et al. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol Ecol Resour. 2015;15:1067–78.

    Article  CAS  Google Scholar 

  34. Mill R, Ruhsam M, Thomas P, Gardner M, Hollingsworth P. Araucaria goroensis (Araucariaceae), a new monkey puzzle from New Caledonia, and nomenclatural notes on Araucaria muelleri. Edinb J Bot. 2017;74:123–39.

    Article  Google Scholar 

  35. Kershaw P, Wagstaff B. The southern conifer family Araucariaceae: history, status, and value for paleoenvironmental reconstruction. Annu Rev Ecol Syst. 2001;32:397–414.

    Article  Google Scholar 

  36. Jones W, Hill K, Allen J. Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea. 1995;6:173–6.

    Article  Google Scholar 

  37. Stockey RA. Mesozoic Araucariaceae: morphology and systematic relationships. J Plant Res. 1994;107:493–502.

    Article  Google Scholar 

  38. Stockey RA. Seeds and embryos of Araucaria mirabilis. Am J Bot. 1975;62:856–68.

    Article  Google Scholar 

  39. Stockey RA. Anatomy and morphology of Araucaria sphaerocarpa Carruthers from the Jurassic inferior oolite of Bruton, Somerset. Bot Gaz. 1980;141:116–24.

    Article  Google Scholar 

  40. Stockey RA. Jurassic araucarian cone from southern England. Palaeontology. 1980;23:657–66.

    Google Scholar 

  41. Stockey RA, Nishida H, Nishida M. Upper Cretaceous Araucarian cones from Hokkaido: Araucaria nihongii sp. nov. Rev Palaeobot Palynol. 1992;72:27–40.

    Article  Google Scholar 

  42. Stockey RA, Nishida H, Nishida M. Upper Cretaceous Araucarian cones from Hokkaido and Saghalien: Araucaria nipponensis sp. nov. Int J Plant Sci. 1994;155:806–15.

    Article  Google Scholar 

  43. Ohsawa T, Nishida H, Nishida M. Yezonia, a new section of Araucaria (Araucariaceae) based on permineralized vegetative and reproductive organs of A. vulgaris comb. nov. from the upper cretaceous of Hokkaido, Japan. J Plant Res. 1995;108:25–39.

    Article  Google Scholar 

  44. Andruchow-Colombo A, Escapa IH, Cúneo NR, Gandolfo MA. Araucaria lefipanensis (Araucariaceae), a new species with dimorphic leaves from the Late Cretaceous of Patagonia, Argentina. Am J Bot. 2018;105:1067–87.

    Article  Google Scholar 

  45. Shi G, Li H, Leslie AB, Zhou Z. Araucaria bract-scale complex and associated foliage from the early-middle Eocene of Antarctica and their implications for Gondwanan biogeography. Hist Biol. 2020;32:164–73.

  46. Herrmann TM. Indigenous knowledge and management of Araucaria araucana forest in the Chilean Andes: implications for native forest conservation. Biodivers Conserv. 2006;15:647–62.

    Article  Google Scholar 

  47. Steward GA, Beveridge AE. A review of New Zealand kauri (Agathis australis (D. Don) Lindl.): its ecology, history, growth and potential for management for timber. N Z J For Sci. 2010;40:33–59.

    Google Scholar 

  48. Dettmann ME, Clifford HT. Biogeography of araucariaceae. In: Dargavel J, editor. Australia and New Zealand forest histories: Araucarian Forests. Australian Forest History Society Inc. Occasional Publication 2. Kingston, Australia: Australian Forest History Society; 2005. pp. 1–9

  49. Huth J. Introducing the Bunya Pine–a noble denizen of the scrub. Queensland Review. 2002;9:7–20.

    Article  Google Scholar 

  50. Steward GA, Kimberley MO, Mason EG, Dungey HS. Growth and productivity of New Zealand kauri (Agathis australis (D. Don) Lindl.) in planted forests. N Z J For Sci. 2014;44:1–13.

    Article  Google Scholar 

  51. DAFF (Department of Agriculture, Fisheries and Forestry). Hoop pine - Araucaria (plantations). Queensland, Australia: State of Queensland; 2013. Report No.: DAFF:3931. Available at: http://era.daf.qld.gov.au/id/eprint/3931/. [cited: 12th of June 2020]. Available from: http://era.daf.qld.gov.au/id/eprint/3931/.

  52. ABRAF (Associação Brasileira de Produtores de Florestas Plantadas). Anuário estatístico ABRAF 2013 ano base 2012. Brasilia: ABRAF; 2013. Report No.: CDD – 634.9568105. Available from: http://www.bibliotecaflorestal.ufv.br/handle/123456789/3910.

  53. Cardoso DJ, Rosot MAD, Garrastazú MC, Rosot NC, Toniolo L Jr, de Oliveira KA. Recommended thinning regimes for Araucaria angustifolia plantations on small properties in southern Brazil: a case study. Adv For Sci. 2017;4:211–8.

    Google Scholar 

  54. Zuhaidi YA, Hashim M. Araucaria hunsteinii: has research helped us to arrive at a decision? J Trop For Sci. 2007;19:64–6.

    Google Scholar 

  55. Nasir SS, Nikfarjam H. Investigating growth of Araucaria excelsa L. in different methods of fertilization. J Ornamental Plants. 2017;7:257–62.

    Google Scholar 

  56. Johns JW, Yost JM, Nicolle D, Igic B, Ritter MK. Worldwide hemisphere-dependent lean in Cook pines. Ecology. 2017;98:2482–4.

    Article  Google Scholar 

  57. De Laubenfels D. Araucariaceae. In: van Steenis C, van Steenis-Kruseman M, editors. Flora Malesiana-Series 1, Spermatophyta. Djakarta: Noordhoff-Kolff; 1984. pp. 419–42.

  58. Coetzee MPA, Wingfield BD, Bloomer P, Ridley GS, Kile GA, Wingfield MJ. Phylogenetic relationships of Australian and New Zealand Armillaria species. Mycologia. 2001;93:887–96.

    Article  CAS  Google Scholar 

  59. van der Pas JB, Hood IA, MacKenzie M. Armillaria root disease. [Internet]. Farm Forestry New Zealand. Forest Pathology in New Zealand No. 4; 2008 [cited 02 Feb 2021]. Available from: https://www.nzffa.org.nz/farm-forestry-model/the-essentials/forest-health-pests-and-diseases/forestry-diseases/Armillaria/ArmillariaPath4/.

  60. Dick MA. Resinosis on Agathis australis (Kauri). Scion Forest Health News. 2009;201:1-2.

  61. Dodd SL, Ramsfield TD, Marshall JW. PCR primers to distinguish Armillaria species found in New Zealand. Australas Plant Pathol. 2010;39:536–43.

    Article  Google Scholar 

  62. McKenzie EHC, Buchanan PK, Johnston PR. Checklist of fungi on kauri (Agathis australis) in New Zealand. NZ J Bot. 2002;40:269–96.

    Article  Google Scholar 

  63. Cunningham GH. Thelephoraceae of New Zealand Part III. The genus Corticium. Trans R Soc N Z. 1954;82:271–327.

    Google Scholar 

  64. Ramsden M, McDonald J, Wylie FR. Forest pests in the South Pacific region: a review of the major causal agents of tree disorders. Queensland, Australia: Department of Primary Industries, Agency for Food and Fibre Sciences, Forestry Research; 2002. Report No.: ACIAR Project FST/2001/045.

  65. Thomson LA. Agathis macrophylla (Pacific kauri), v1.2. In: Elevitch CR, editor. Species profiles for Pacific Island Agroforestry. Holualoa: Permanent Agriculture Resources; 2006. pp. 1–13. https://agroforestry.org/free-publications/traditional-tree-profiles.

  66. Herliyana EN. Early report of red root rot of Ganoderma sp. on Agathis sp. (Damar) in Mount Walat Education Forest, Sukabumi, West Java. Jurnal Silvikultur Tropika. 2012;3:102–7.

    Google Scholar 

  67. Herliyana EN, Permatasari DP. Area of damage and distribution of occurrence the red root disease in Gunung Walat University Forest. Sukabumi Jurnal Silvikultur Tropika. 2016;7:24–31.

    Google Scholar 

  68. Neil PE. Root disease (Phellinus noxius (Corner) GH Cunn.) of Cordia alliodora in Vanuatu. Commonw For Rev. 1988;67:363–72.

    Google Scholar 

  69. Weir BS, Paderes EP, Anand N, Uchida JY, Pennycook SR, Bellgard SE, et al. A taxonomic revision of Phytophthora Clade 5 including two new species, Phytophthora agathidicida and P. cocois. Phytotaxa. 2015;205:21–38.

    Article  Google Scholar 

  70. Horner IJ, Hough EG. Pathogenicity of four Phytophthora species on kauri: in vitro and glasshouse trials. N Z Plant Prot. 2014;67:54–9.

    Google Scholar 

  71. Gadgil PD. Phytophthora heveae, a pathogen of kauri. NZ J Forest Sci. 1974;4:59–63.

    Google Scholar 

  72. Waipara NW, Hill S, Hill LMW, Hough EG, Horner IJ. Surveillance methods to determine tree health, distribution of kauri dieback disease and associated pathogens. N Z Plant Prot. 2013;66:235–41.

    Google Scholar 

  73. Podger FD, Newhook FJ. Phytophthora cinnamomi in indigenous plant communities in New Zealand. NZ J Bot. 1971;9:625–38.

    Article  Google Scholar 

  74. Newhook FJ. The association of Phytophthora spp. with mortality of Pinus radiata and other conifers: I Symptoms and epidemiology in shelterbelts. N Z J Agric Res. 1959;2:808–43.

    Article  Google Scholar 

  75. Beever RE, Waipara NW, Ramsfield TD, Dick MA, Horner IJ. Kauri (Agathis australis) under threat from Phytophthora? In: Goheen E, Frankel S, editors. Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09: Phytophthoras in forests and natural ecosystems. Gen. Tech. Rep. PSW-GTR-221. Albany: United States Department of Agriculture; 2009. pp. 74–85.

  76. Ramsfield TD, Dick MA, Beever RE, Horner IJ, McAlonan MJ, Hill CF. Phytophthora kernoviae in New Zealand. in Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09: Phytophthoras in forests and natural ecosystems. 2009. Monterey, California.

  77. Brien RM, Dingley JM. Fourth supplement to “A revised list of plant diseases recorded in New Zealand”, 1957–1958. N Z J Agric Res. 1959;2:406–13.

    Article  Google Scholar 

  78. Kohler F. Agents pathogènes et maladies physiologiques des plantes cultivées en Nouvelle-Calédonie et aux Iles Wallis et Futuna. Catalogues Sciences de la Vie, Phytopathologie. Vol. 1. Bondy: Orstom; 1987.

  79. Zhou L-W, Ji X-H, Vlasák J, Dai Y-C. Taxonomy and phylogeny of Pyrrhoderma: a redefinition, the segregation of Fulvoderma, gen. nov., and identifying four new species. Mycologia. 2018;110:872–89.

    Article  Google Scholar 

  80. Moncalvo J-M, Buchanan PK. Molecular evidence for long distance dispersal across the Southern Hemisphere in the Ganoderma applanatum-australe species complex (Basidiomycota). Mycol Res. 2008;112:425–36.

    Article  CAS  Google Scholar 

  81. Buchanan PK. A new species of Heterobasidion (Polyporaceae) from Australasia. Mycotaxon. 1988;32:325–37.

    Google Scholar 

  82. Hood IA. Tree decays. Forest pathology in New Zealand No. 17 [Internet]. Scion Digital Library; 2009 [cited 20 March 2021]. Available from: https://scion.contentdm.oclc.org/digital/collection/p20044coll10/id/2/rec/1.

  83. Ota Y, Tokuda S, Buchanan PK, Hattori T. Phylogenetic relationships of Japanese species of Heterobasidion—H. annosum sensu lato and an undetermined Heterobasidion sp. Mycologia. 2006;98:717–25.

    CAS  Google Scholar 

  84. Buchanan PK, Rwarden L. An annotated checklist of polypore and polypore-like fungi recorded from New Zealand. NZ J Bot. 2000;38:265–323.

    Article  Google Scholar 

  85. Ivory MH. The pathology of more forest tree species in West Malaysia. Commonw For Rev. 1975;54:64–8.

    Google Scholar 

  86. Ahmad N. Mycological research in Malaysia. Proceedings: Plant Sciences. 1986;96:363–71.

  87. Heather NW, Schaumberg JB. Plantation problems of kauri pine in south east Queensland. Aust For. 1966;30:12–9.

    Article  Google Scholar 

  88. Hyland BPM. A revision of the genus Agathis (Araucariaceae) in Australia. Brunonia. 1977;1:103–15.

    Article  Google Scholar 

  89. Punithalingam E, Jones D. Aecidium species on Agathis. Trans Br Mycol Soc. 1971;57:325–31.

    Article  Google Scholar 

  90. Peterson RS. Rust fungi on Araucariaceae. Mycopathologia et mycologia applicata. 1968;34:17–26.

  91. Kohler F, Pellegrin F, Jackson G, McKenzie EHC. Diseases of cultivated crops in Pacific Islands countries. Noumea, New Caledonia: South Pacific Comission; 1997.

  92. Aime MC, McTaggart AR. A higher-rank classification for rust fungi, with notes on genera. Fungal Syst Evol. 2021;7:21.

    Article  CAS  Google Scholar 

  93. Weir BS, Johnston PR, Damm U. The Colletotrichum gloeosporioides species complex. Stud Mycol. 2012;73:115–80.

    Article  CAS  Google Scholar 

  94. Bowen M, Whitmore T. A second look at Agathis. Oxford, UK: Tropical Forestry Papers. Department of Forestry Oxford University; 1980. Report No.: 0141–8181.

  95. Minter DW, Hetiige G. Lophodermium agathidis and Meloderma richeae, two members of the Rhytismataceae from Australasia. NZ J Bot. 1983;21:39–48.

    Google Scholar 

  96. Lantieri A, Johnston PR, Park D, Lantz H, Medardi G. Hypoderma siculum sp. nov. from Italy. Mycotaxon. 2012;118:393–401.

    Article  Google Scholar 

  97. Johnston PR. Rhytismataceae in New Zealand 2. The genus Lophodermium on indigenous plants. N Z J Bot. 1989;27:243–74.

    Article  Google Scholar 

  98. Ellis JP. Some thalloid Meliolas. Trans Br Mycol Soc. 1974;63:93–8.

    Article  Google Scholar 

  99. Robertson GI. Occurrence of Pythium spp. in New Zealand soils, sands, pumices, and peat, and on roots of container-grown plants. N Z J Agric Res. 1973;16:357–65.

    Article  Google Scholar 

  100. Robertson GI. The genus Pythium in New Zealand. NZ J Bot. 1980;18:73–102.

    Article  Google Scholar 

  101. Auer CG, Grigoletti Jr. A. Doenças registradas em Araucaria angustifolia e Pinus spp. nos estados do Paraná e de Santa Catarina. Brazil: Embrapa, Ministério da Agricultura e do Abastecimiento; 1997. Report No.: 0104–5903.

  102. de Oliveira OdS. Fungos causadores de danos em Araucaria angustifolia (Bert.) O. Ktze. Floresta. 1981;12:23–7.

  103. Mwenje E, Ride JP. Morphological and biochemical characterization of Armillaria isolates from Zimbabwe. Plant Pathol. 1996;45:1036–51.

    Article  CAS  Google Scholar 

  104. Mwenje E, Wingfield BD, Coetzee MP, Wingfield MJ. Molecular characterisation of Armillaria species from Zimbabwe. Mycol Res. 2003;107:291–6.

    Article  CAS  Google Scholar 

  105. Butin H, Peredo HL. Hongos parásitos en coníferas de América del Sur, con especial referencia a Chile. Bibliotheca Mycologica. Berlin-Stuttgart: J. Cramer; 1986.

  106. Vazquez JP. Diagnóstico de especies de Armillaria y Phytophthora en suelo como estrategia de conservación de árboles singulares en Galicia. In: Montero González G, Guijarro Guzmán M, editors. Actas 6° Congreso Forestal Español CD-Rom. 6CFE01–410. Pontevedra: Sociedad Española de Ciencias Forestales; 2013. pp. 1–9.

  107. Kile GA, Watling R. Identification and occurrence of Australian Armillaria species, including A pallidula sp. nov. and comparative studies between them and non-Australian tropical and Indian Armillaria. Trans Br Mycol Soc. 1988;91:305–15.

    Article  Google Scholar 

  108. Lombard L, Rodas CA, Crous PW, Wingfield BD, Wingfield MJ. Calonectria (Cylindrocladium) species associated with dying Pinus cuttings. Persoonia. 2009;23:41–7.

    Article  CAS  Google Scholar 

  109. Hodges CS, May LC. A root disease of pine, Araucaria, and Eucalyptus in Brazil caused by a new species of Cylindrocladium. Phytopathology. 1972;62:898–901.

    Article  Google Scholar 

  110. Kim M-S, Klopfenstein NB, Hanna JW, Cannon P, Medel R, López A. First report of Armillaria root disease caused by Armillaria tabescens on Araucaria araucana in Veracruz. Mexico Plant Dis. 2010;94:784.

    Article  Google Scholar 

  111. Brown BN, Wylie FR. Diseases and pests of Australian forest nurseries: past and present. In: Sutherland JR, Glover SG, editors. Proceedings of the first meeting of IUFRO Working Party S. 2.07–09 (Diseases and Insects in Forest Nurseries). Victoria, British Columbia, Canada: Forestry Canada; 1991. pp. 3–15.

  112. Bolland L. Phellinus noxius: cause of a significant root-rot in Queensland hoop pine plantations. Aust For. 1984;47:2–10.

    Article  Google Scholar 

  113. Bolland L. Variation in Phellinus noxius (Corner) GH Cunn. In: Abstracts of Doctoral Thesis. Australian Forestry 52:135–93; 1980. pp. 141. https://doi.org/10.1080/00049158.1989.10674548.

  114. Chang T, Yang W. Phellinus noxius in Taiwan: distribution, host plants and the pH and texture of the rhizosphere soils of infected hosts. Mycol Res. 1998;102:1085–8.

    Article  Google Scholar 

  115. Ann P-J, Chang T-T, Ko W-H. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Dis. 2002;86:820–6.

    Article  Google Scholar 

  116. Tsai J-N, Ann P-J, Liou R-F, Hsieh W-H, Ko W-H. Phellinus noxius: molecular diversity among isolates from Taiwan and its phylogenetic relationship with other species of Phellinus based on sequences of the ITS region. Bot Stud. 2017;58:9.

    Article  CAS  Google Scholar 

  117. Oudemans P, Coffey MD. A revised systematics of twelve papillate Phytophthora species based on isozyme analysis. Mycol Res. 1991;95:1025–46.

    Article  CAS  Google Scholar 

  118. Dos Santos ÁF, Tessmann DJ, Alves TC, Vida JB, Harakava R. Root and crown rot of Brazilian pine (Araucaria angustifolia) caused by Phytophthora cinnamomi. J Phytopathol. 2011;159:194–6.

    Article  Google Scholar 

  119. Von Broembsen S. Occurrence of Phytophthora cinnamomi on indigenous and exotic hosts in South Africa, with special reference to the South-Western Cape Province. Phytophylactica. 1984;16:221–6.

    Google Scholar 

  120. González G, Opazo A. Enfermedades fungosas y otras. In: Baldini A, Pancel L, editors. Agentes de daño en el bosque nativo. Santiago de Chile: Editorial Universitaria; 2002. pp. 89-199.

  121. Robertson GI. Susceptibility of exotic and indigenous trees and shrubs to Phytophthora cinnamomi Rands. N Z J Agric Res. 1970;13:297–307.

    Article  Google Scholar 

  122. Arentz F, Simpson JA. Distribution of Phytophthora cinnamomi in Papua New Guinea and notes on its origin. Trans Br Mycol Soc. 1986;87:289–95.

    Article  Google Scholar 

  123. Lee SB, Taylor JW. Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Mol Biol Evol. 1992;9:636–53.

    CAS  Google Scholar 

  124. Raabe RD, Connors IL, Martinez AP, Nelson SC. Checklist of plant diseases in Hawaii: including records of microorganisms, principally fungi, found in the State. Honolulu: University of Hawaii; 2009.

    Google Scholar 

  125. Spaulding P. Foreign diseases of forest trees of the world: an annotated list. Vol. 197. Washington, DC: US Government Printing Office; 1961. Available from: https://books.google.co.za/books?hl=en&lr=&id=4jPnUVheGdAC&oi=fnd&pg=PA1&dq=araucaria+araucana+mauritius&ots=8Wjf6EEFEF&sig=c4MgaoIBzHn5T774qMzHG2-06XM&redir_esc=y#v=onepage&q=araucaria%20araucana%20mauritius&f=false.

  126. Galvez E, Larach A, Riquelme N, Celis JL, Guajardo J, Besoain XA. Araucaria araucana root rot caused by Phytophthora multivora and P. citrophthora. Phytopathology. 2018;108:S1.186.

  127. Jung T, Orlikowski L, Henricot B, Abad-Campos P, Aday AG, Aguín Casal O, et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathol. 2016;46:134–63.

    Article  Google Scholar 

  128. Erwin DC, Ribeiro OK. Phytophthora diseases worldwide. St. Paul: APS Press; 1996.

    Google Scholar 

  129. dos Santos AF, Thomazi H, Duarte HSS, Machado EB, Silva CN, Tessmann DJ. First report of root rot caused by Rosellinia bunodes on a poplar species (Populus deltoides) in Brazil. Plant Dis. 2017;101:632–3.

    Article  Google Scholar 

  130. Cunningham GH. The Polyporaceae of New Zealand. Trans Proc R Soc N Z. 1928;58:202–50.

    Google Scholar 

  131. Buchanan PK, Hood IA. New species and new records of Aphyllophorales (Basidiomycetes) from New Zealand. NZ J Bot. 1992;30:95–112.

    Article  Google Scholar 

  132. Cockle KL, Martin K, Robledo G. Linking fungi, trees, and hole-using birds in a neotropical tree-cavity network: pathways of cavity production and implications for conservation. For Ecol Manage. 2012;264:210–9.

    Article  Google Scholar 

  133. Rajchenberg M, Robledo G. Pathogenic polypores in Argentina. Forest Pathol. 2013;43:171–84.

    Article  Google Scholar 

  134. Torres-Torres MG, Guzmán-Dávalos L, de Mello GA. Ganoderma in Brazil: known species and new records. Mycotaxon. 2013;121:93–132.

    Article  Google Scholar 

  135. Chase TE, Ullrich RC, Korhonen K. Homothallic isolates of Heterobasidion annosum. Mycologia. 1985;77:975–7.

    Article  Google Scholar 

  136. Zhao C-L, Saba M, Khalid AN, Song J, Pfister DH. Heterobasidion amyloideopsis sp. nov. (Basidiomycota, Russulales) evidenced by morphological characteristics and phylogenetic analysis. Phytotaxa. 2017;317:199–210.

    Article  Google Scholar 

  137. Simpson JA. Heterobasidion annosum on Araucaria cunninghamii in Papua New Guinea. Plant Dis Rep. 1978;62:404–5.

    Google Scholar 

  138. Maijala P, Harrington TC, Raudaskoski M. A peroxidase gene family and gene trees in Heterobasidion and related genera. Mycologia. 2003;95:209–21.

    Article  CAS  Google Scholar 

  139. De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ. Redefining Ceratocystis and allied genera. Stud Mycol. 2014;79:187–219.

    Article  Google Scholar 

  140. Goos RD. A new genus of the Hyphomycetes from Hawaii. Mycologia. 1970;62:171–5.

    Article  Google Scholar 

  141. Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ. Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol. 2006;55:75–97.

    Article  Google Scholar 

  142. Butin H. A new species of Ceratocystis causing blue-stain in Araucaria araucana. Can J Bot. 1968;46:61–3.

    Article  Google Scholar 

  143. De Hoog GS, Scheffer RJ. Ceratocystis versus Ophiostoma: a reappraisal. Mycologia. 1984;76:292–9.

    Article  Google Scholar 

  144. Butin H. A new species of Ophiostoma causing blue-stain in Araucaria angustifolia (Bertol.) O. Kuntze. J Phytopathol. 1978;91:230–4.

  145. Hausner G, Reid J. Notes on Ceratocystis brunnea and some other Ophiostoma species based on partial ribosomal DNA sequence analysis. Can J Bot. 2003;81:865–76.

    Article  CAS  Google Scholar 

  146. Silveira RMBd, Guerrero RT. Os gêneros Rigidoporus, Murr. e Flaviporus Murr. (Basiciomycetes) no Parque Nacional de Aparados da Serra, RS. Acta Botanica Brasilica. 1989;3:29–45. https://doi.org/10.1590/S0102-33061989000300004.

  147. Hood IA, Dick M. Junghuhnia vincta (Berkeley) comb. nov., root pathogen of Pinus radiata. N Z J Bot. 1988;26:113–6.

  148. Bolland L. Chaetoporus radulus on hoop pine in Queensland. Australas Plant Pathol. 1974;3:60.

    Article  Google Scholar 

  149. Dick MA. Junghuhnia root disease. Scion: Forest Pathology in New Zealand No. 18 (2nd Edition). 2009;1–6.

  150. Ivory MH. Poria root disease of exotic forest trees in east Africa. East Afr Agric For J. 1973;39:180–8.

    Article  Google Scholar 

  151. Huang C-L, Wang Y-Z. New records of endophytic fungi associated with the Araucariaceae in Taiwan. Collect Res. 2011;24:87–95.

    Google Scholar 

  152. Zapata M, Schafer M. Diplodia africana causing twig death on Araucaria araucana, a new host and first record for Chile. New Disease Rep. 2019;40:2.

    Article  Google Scholar 

  153. Besoain X, Guajardo J, Camps R. First report of Diplodia mutila causing gummy canker in Araucaria araucana in Chile. Plant Dis. 2017;101:1328.

    Article  Google Scholar 

  154. Corrêa PRR, Auer CG, Santos ÁFd. Patogenicidade de Sphaeropsis sapinea em árvores jovens de Araucaria angustifolia. Summa Phytopathologica. 2012;38:84–6.

  155. Besoain X, Guajardo J, Larach A, Riquelme N, Galvez E, Tapia L, et al. First report of Diplodia seriata causing gummy canker in Araucaria araucana wild populations in south-central Chile. Plant Dis. 2019;103:2684.

    Article  Google Scholar 

  156. Tan YP, Shivas RG, Marney TS, Edwards J, Dearnaley J, Jami F, et al. Australian cultures of Botryosphaeriaceae held in Queensland and Victoria plant pathology herbaria revisited. Australas Plant Pathol. 2019;48:25–34.

    Article  CAS  Google Scholar 

  157. Vegni G. Segnalazione della «Necrosi del colletto» della Araucaria imbricata. Riv Patol Vegetale. 1964;4:142–5.

    Google Scholar 

  158. Voglino P. Trunk rot of Araucaria imbricata. Difesa delle Piante. 1932;9:17–20.

    Google Scholar 

  159. Kliejunas JT. Bleeding canker of Norfolk Island pine in Hawaii. Plant Dis Rep. 1976;60:84–7.

    Google Scholar 

  160. Darge WA. First report of Lasiodiplodia theobromae causing needle blight and stem canker diseases on Araucaria heterophylla in Ethiopia. J Hortic Res. 2017;25:15–8.

    Article  CAS  Google Scholar 

  161. Li GQ, Liu FF, Li JQ, Liu QL, Chen SF. Botryosphaeriaceae from Eucalyptus plantations and adjacent plants in China. Persoonia. 2018;40:63–95.

    Article  CAS  Google Scholar 

  162. Pérez S, Guerrero J, Galdames R. First report of Neofusicoccum nonquaesitum in Chile causing branch dieback and decline in Araucaria araucana. Plant Dis. 2018;102:1460.

    Article  Google Scholar 

  163. Slippers B, Summerel BA, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ. Preliminary studies on Botryosphaeria species from Southern Hemisphere conifers in Australasia and South Africa. Australas Plant Pathol. 2005;34:213–20.

    Article  Google Scholar 

  164. Sakalidis ML, Hardy GESJ, Burgess TI. Use of the genealogical sorting index (GSI) to delineate species boundaries in the Neofusicoccum parvum–Neofusicoccum ribis species complex. Mol Phylogenet Evol. 2011;60:333–44.

    Article  Google Scholar 

  165. Dobbie K. Dieback of Araucaria heterophylla. Forest Health News No. 173 [Internet]. SCION: Pests and diseases of forestry in New Zealand; 2007 [cited 13 August 2020]. Available from: https://www.nzffa.org.nz/farm-forestry-model/the-essentials/forest-health-pests-and-diseases/Pests-diseases-by-tree-species/araucaria-heterophylla/Norfolk-pine-dieback/.

  166. Golzar H, Burgess TI. Neofusicoccum parvum, a causal agent associated with cankers and decline of Norfolk Island pine in Australia. Australas Plant Pathol. 2011;40:484–9.

    Article  Google Scholar 

  167. ArborCarbon (Pty Lt). Investigation into the cause(s) of premature decline of Norfolk Island Pine. Perth: Town of Cottesloe; 2020. Report No.: J20490. Available from: https://www.cottesloe.wa.gov.au/council-meetings/ordinary-council-meeting/24-november-2020-ordinary-council-meeting/274/documents/10110-arbor-carbon-final-report-on-norfolk-island-pine-decline-nov-2020.pdf.

  168. Butin H. Studien zur Morphologie und Biologie von Mikronegeria fagi Diet. et Neg. J Phytopathol. 1969;64:242–57.

    Article  Google Scholar 

  169. Riess K, Schön ME, Lutz M, Butin H, Oberwinkler F, Garnica S. On the evolutionary history of Uleiella chilensis, a smut fungus parasite of Araucaria araucana in South America: Uleiellales ord nov. in Ustilaginomycetes. PloS one. 2016;11:e0147107.

    Article  CAS  Google Scholar 

  170. Barth OM. Os esporos de Uleiella paradoxa Schroet (Urediniales). Sellowia. 1964;16:179–89.

  171. Thirumalachar MJ. Critical notes on some plant rusts. Bull Torrey Bot Club. 1949;76:339–42.

    Article  Google Scholar 

  172. Butin H, Speer EO. Über einige parasitische Ascomyceten auf Nadeln der Brasilianischen Araukarie. Sydowia. 1978;31:9–26.

  173. Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Gené J, Guarro J, et al. Fungal planet description sheets: 716–784. Persoonia. 2018;40:239–392.

    Article  Google Scholar 

  174. Butin H. Beitrag zur ascomyceten flora von Chile. Sydowia. 1975;27:267–92.

    Google Scholar 

  175. Chetverikov PE, Beaulieu F, Beliavskaia AY, Rautian MS, Sukhareva SI. Redescription of an early-derivative mite, Pentasetacus araucariae (Eriophyoidea, Phytoptidae), and new hypotheses on the eriophyoid reproductive anatomy. Exp Appl Acarol. 2014;63:123–55.

    Article  Google Scholar 

  176. Butin H. Zwei neue Caliciopsis-arten auf chilenischen koniferen. J Phytopathol. 1970;69:71–7.

    Article  Google Scholar 

  177. Crous PW, Kang J-C. Phylogenetic confirmation of Calonectria spathulata and Cylindrocladium leucothoes based on morphology, and sequence data of the β-tubulin and ITS rRNA genes. Mycoscience. 2001;42:51–7.

    Article  CAS  Google Scholar 

  178. Wu H-X, Tian Q, Li WJ, Hyde KD. A reappraisal of Microthyriaceaea. Phytotaxa. 2014;176:201–12.

    Article  Google Scholar 

  179. Arentz F. Forest nursery diseases in Papua New Guinea. In: Sutherland JR, Glover SG, editors. Proceedings of the first meeting of IUFRO Working Party S. 2.07–09 (Diseases and Insects in Forest Nurseries). Victoria, British Columbia, Canada: Forestry Canada; 1991. pp. 97–9.

  180. Voglino P. On a wilt of Araucaria imbricata. Difesa delle Piante. 1933;10:37–9.

  181. Masser G. Fungi Exotici, II. Bulletin of miscellaneous information, Royal Botanic Gardens, Kew. 1899;153/154:164-85.

  182. Saccardo. Fungilli imperfecti novi. J Bot. 1915;15:357–63.

  183. Karsten PA, Hariot P. Fungilli imperfecti novi. Journal de Botanique. 1890;15:357–63.

  184. Masser G. Bulletin of miscellaneous information. Royal Gardens, Kew. London: Darling and Son; 1899.

  185. Crous PW, Wingfield MJ, Schumacher RK, Akulov A, Bulgakov TS, Carnegie AJ, et al. New and interesting fungi. 3. Fungal Syst Evol. 2020;6:157–231.

    Article  CAS  Google Scholar 

  186. Alfieri Jr SA, Langdon KR, Wehlburg C, Kimbrough JW. Index of plant diseases in Florida, Bulletin 11. Florida Department of Agriculture and Consumer Services, Division of Plant Industry; 1984. Available from: https://palmm.digital.flvc.org/islandora/object/uf%3A104219#page/221/mode/1up.

  187. Saccardo PA. Sylloge fungorum (Vol XXV). Sumptibus Coheredum Saccardo. Trotter A, editor. Avellino, Italy: Typis pergola; 1931.

  188. Saccardo PA. Fungi ex insula Melita (Malta) lecti a Doct. Caruana-Gatto et Doct. G. Borg annis MCMXIII et MCMIV. Nuovo Giornale Botanico Italiano. 1915;22:24–76.

  189. Butin H. Zwei neue arten der gattung Phaeocryptopus Naumov. J Phytopathol. 1970;68:269–75.

    Article  Google Scholar 

  190. Kobayashi T, Nakashima C, Nishijima T. Notes on some plant-inhabiting fungi collected from the Nansei Islands (1). Mycoscience. 2003;44:473–9.

    Article  Google Scholar 

  191. Bissett J, Palm ME. Species of Phyllosticta on conifers. Can J Bot. 1989;67:3378–85.

    Article  Google Scholar 

  192. Butin H. Rhizothyrium parasiticum sp. nov.(Coelomycetes), ein blattparasit auf Araucaria araucana (Mol.) C. Koch. Journal of Phytopathology. 1986;115:313–7.

  193. Macedo DM, Vitorino MD, Veiga JL, Souza AH, Barreto RW. First report of Athelia rolfsii causing damping off in Araucaria bidwillii (Bunya Pine) in Brazil. Plant Disease. 2018;102:1667–.

  194. Ntima OO. The Araucarias. Fast growing timber trees of the lowland tropics, No.3. Oxford: Commonwealth Forestry Institute, University of Oxford; 1968.

  195. Ferreira FA, Muchovej JJ. Diseases of forest nurseries in Brazil. In: Sutherland JR, Glover SG, editors. Proceedings of the first meeting IUFRO Working Party S. 2.07–09 (Diseases and Insects in Forest Nurseries). Victoria, British Columbia, Canada: Forestry Canada; 1991. pp. 3–15.

  196. Gadgil PD. Fungi of New Zealand. Vol. 4. Fungi on trees and shrubs in New Zealand. Hong Kong: Fungal Diversity Press; 2005.

  197. Schoch CL, Crous PW, Wingfield BD, Wingfield MJ. Phylogeny of Calonectria based on comparisons of β-tubulin DNA sequences. Mycol Res. 2001;105:1045–52.

    Article  CAS  Google Scholar 

  198. Kamara AM, El-Lakany MH, Badran OA, Attia YG. Seed pathology of Araucaria spp. I. A survey of seed-borne fungi associated with four Araucaria spp. Aust For Res. 1981;11:269–74.

    Google Scholar 

  199. Gerlach W. Fusarium robustum spec, nov., der erreger einer Stammfäule an Araucaria angustifolia (Bertol.) O. Kuntze in Argentinien? J Phytopathol. 1977;88:29–37.

  200. O’Donnell K. Phylogenetic evidence indicates the important mycotoxigenic strains Fn-2, Fn-3, Fn-2B and Fn-M represent a new species of Fusarium. Mycotoxins. 1997;1997:1–10.

    Article  Google Scholar 

  201. Lindquist JC, Merlo PA. Decay of Araucaria angustifolia caused by Fusarium robustum Gerlach. (Abstr.). Rev Fac Agron. 1980;56:1–3.

  202. El-Lakany MH, Kamara AM, Badran OA, Attia YG. Seed pathology of Araucaria spp., 2. Fungal species associated with Araucaria heterophylla seed. Australian Forest Research. 1981;11:275–81.

  203. Evans-Ruhl G, Latin RX, Pecknold PC, Scott DH, Mitchell B, Harmer L. Compilation of plant diseases and disorders in Indiana. Proc Indiana Acad Sci. 1981;91:120–39.

    Google Scholar 

  204. Liew ECY, Offord A, Pinaria A, Pavich C, Summerell BA. Effects of metalaxyl and phosphonate on Phytophthora root rot of Wollemi pine. 9th International Congress of Plant Pathology, ICPP 2008. Journal of Plant Pathology. 2008;90 (Supplement 2).S2.413–4.

  205. Bullock S, Summerell BA, Gunn LV. Pathogens of the Wollemi pine, Wollemia nobilis. Australas Plant Pathol. 2000;29:211–4.

    Article  Google Scholar 

  206. Puno V, Laurence M, Guest D, Liew E. Detection of Phytophthora multivora in the Wollemi Pine site and pathogenicity to Wollemia nobilis. Australas Plant Pathol. 2015;44:205–15.

    Article  CAS  Google Scholar 

  207. Sivanesan A, Shivas RG. Studies on Mycosphaerella species in Queensland. Aust Mycol Res. 2002;106:355–64.

    Article  Google Scholar 

  208. Slippers B, Wingfield MJ. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev. 2007;21:90–106.

    Article  Google Scholar 

  209. IUCN. The IUCN Red List of Threatened Species, Version 2020–3. [Internet]. 2021 [cited 2 Feb 2021]. Available from: https://www.iucnredlist.org/search/stats?taxonomies=101489&searchType=species.

  210. Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA. Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol. 2003;12:2331–43.

    Article  CAS  Google Scholar 

  211. Offord C, Porter C, Meagher P, Errington G. Sexual reproduction and early plant growth of the Wollemi pine (Wollemia nobilis), a rare and threatened Australian conifer. Ann Bot. 1999;84:1–9.

    Article  Google Scholar 

  212. •• Bradshaw R, Bellgard S, Black A, Burns B, Gerth M, McDougal R, et al. Phytophthora agathidicida: research progress, cultural perspectives and knowledge gaps in the control and management of kauri dieback in New Zealand. Plant Pathology. 2020;69:3–16. This review summarizes most of the accumulated knowledge about one of the most studied and serious diseases on species of the Araucariaceae, including aspects of its biology, socioeconomic and ecological impacts, and management strategies.

  213. Schmidt H. Dinámica de un bosque virgen de Araucaria-Lenga (Chile). Bosque. 1977;2:3–11.

  214. Sanguinetti J, Kitzberger T. Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer Araucaria araucana. Austral Ecol. 2008;33:78–87.

    Article  Google Scholar 

  215. Paludo GF, Duarte RI, Bernardi AP, Mantovani A, Reis MSd. The size of Araucaria angustifolia (Bertol.) Kuntze entering into reproductive stages as a basis for seed management projects. Rev Árvore. 2016;40:695–705.

    Article  Google Scholar 

  216. Kang K-S, Cappa EP, Hwang J. Growth characteristics of 100 open-pollinated families in an early-age test of Agathis loranthifolia in West Java, Indonesia. J Korean For Soc. 2010;99:213–9.

    Google Scholar 

  217. Picone AP. Habitat, population structure and the conservation status of Araucaria bidwillii Hook. in the Australian Wet Tropics. [MSc thesis]. [Townsville, Australia]: James Cook University; 2015.

  218. Zimmer HC, Auld TD, Benson J, Baker PJ. Recruitment bottlenecks in the rare Australian conifer Wollemia nobilis. Biodivers Conserv. 2014;23:203–15.

    Article  Google Scholar 

  219. Ogden J, Wardle GM, Ahmed M. Population dynamics of the emergent conifer Agathis australis (D. Don) Lindl.(kauri) in New Zealand II Seedling population sizes and gap-phase regeneration. N Z J Bot. 1987;25:231–42.

    Article  Google Scholar 

  220. Clearly M. The tension between conservation and tourism in New Zealand: a case study on Kauri dieback disease. [Internet]. Our Environment; 2020 [cited 10 February 2021]. Available from: https://ourenvironment.ac.nz/2020/04/26/the-tension-between-conservation-and-tourism-in-new-zealand-a-case-study-on-kauri-dieback-disease/.

  221. Steward G, Hansen L, Dungey H. Economics of New Zealand planted kauri forestry–a model exercise. N Z J For. 2014;59:31–6.

    Google Scholar 

  222. Aagesen DL. Indigenous resource rights and conservation of the monkey-puzzle tree (Araucaria araucana, araucariaceae): A case study from Southern Chile. Econ Bot. 1998;52:146–60.

    Article  Google Scholar 

  223. •• Burgess TI, Wingfield MJ. Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience. 2017;67:14–25. This review, using Eucalyptus as a model genus, describes and exemplifies the scenarios in which the movement of plant material and changes in management can drive disease epidemics in both, plantations and natural forests.

  224. Kelly CL, Pickering CM, Buckley RC. Impacts of tourism on threatened plant taxa and communities in Australia. Ecol Manag Restor. 2003;4:37–44.

    Article  Google Scholar 

  225. Desprez-Loustau M-L, Aguayo J, Dutech C, Hayden KJ, Husson C, Jakushkin B, et al. An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Ann For Sci. 2016;73:45–67.

    Article  Google Scholar 

  226. Slippers B, Stenlid J, Wingfield MJ. Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends Ecol Evol. 2005;20:420–1.

    Article  Google Scholar 

  227. Santini A, Liebhold A, Migliorini D, Woodward S. Tracing the role of human civilization in the globalization of plant pathogens. ISME J. 2018;12:647–52.

    Article  Google Scholar 

  228. Grulke NE. The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytol. 2011;189:8–11.

    Article  Google Scholar 

  229. Desprez-Loustau M-L, Robin C, Reynaud G, Déqué M, Badeau V, Piou D, et al. Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Can J Plant Path. 2007;29:101–20.

    Article  Google Scholar 

  230. Bassett I, Horner I, Hough E, Wolber F, Egeter B, Stanley M, et al. Ingestion of infected roots by feral pigs provides a minor vector pathway for kauri dieback disease Phytophthora agathidicida. Forestry. 2017;90:640–8.

    Article  Google Scholar 

  231. Tella JL, Lambertucci SA, Speziale KL, Hiraldo F. Large-scale impacts of multiple co-occurring invaders on monkey puzzle forest regeneration, native seed predators and their ecological interactions. Glob Ecol Conserv. 2016;6:1–15.

    Article  Google Scholar 

  232. Gallo L, Izquierdo F, Sanguinetti L, Pinna A, Siffredi G, Ayesa J, et al. Araucaria araucana forest genetic resources in Argentina. In: Vinceti B, Amaral W, Meilleur B, editors., et al., Challenges in managing forest genetic resources for livelihoods: examples from Argentina and Brazil. Rome: International Plant Genetic Resources Institute; 2004. p. 115–43.

    Google Scholar 

  233. Shaw C, MacKenzie M, Toes E, Hood I. Cultural characteristics and pathogenicity to Pinus radiata of Armillaria novae-zelandiae and A. limonea. N Z J For Sci. 1981;11:65–70.

    Google Scholar 

  234. Lewis KS, Black A, Condron LM, Waipara NW, Scott P, Williams N, et al. Land-use changes influence the sporulation and survival of Phytophthora agathidicida, a lethal pathogen of New Zealand kauri (Agathis australis). For Pathol. 2019;49:e12502.

    Article  Google Scholar 

  235. Beauchamp A. The detection of Phytophthora Taxon “Agathis” in the second round of surveillance sampling—with discussion of the implications for kauri dieback management of all surveillance activity. New Zealand: Shared Services Threats and Transformation, Department of Conservation; 2013.

  236. Donoso SR, Peña-Rojas K, Espinoza C, Galdames E, Pacheco C. Producción, permanencia y germinación de semillas de Araucaria araucana (Mol.) K. Koch en bosques naturales, aprovechados por comunidades indígenas del sur de Chile. Interciencia. 2014;39:338–43.

  237. Stenlid J, Oliva J, Boberg JB, Hopkins AJ. Emerging diseases in European forest ecosystems and responses in society. Forests. 2011;2:486–504.

    Article  Google Scholar 

  238. Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda HH, Veloso-Aguila D. The central Chile mega drought (2010–2018): a climate dynamics perspective. Int J Climatol. 2020;40:421–39.

    Article  Google Scholar 

  239. Schumacher V, Justino F, Fernández A, Meseguer-Ruiz O, Sarricolea P, Comin A, et al. Comparison between observations and gridded data sets over complex terrain in the Chilean Andes: precipitation and temperature. Int J Climatol. 2020;40:5266–88.

    Article  Google Scholar 

  240. Desprez-Loustau M-L, Marçais B, Nageleisen L-M, Piou D, Vannini A. Interactive effects of drought and pathogens in forest trees. Ann For Sci. 2006;63:597–612.

    Article  Google Scholar 

  241. Sturrock R, Frankel S, Brown A, Hennon P, Kliejunas J, Lewis K, et al. Climate change and forest diseases. Plant Pathol. 2011;60:133–49.

    Article  Google Scholar 

  242. Bostock RM, Pye MF, Roubtsova TV. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol. 2014;52:517–49.

    Article  CAS  Google Scholar 

  243. Brodribb TJ, McAdam SA, Jordan GJ, Martins SC. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc Natl Acad Sci. 2014;111:14489–93.

    Article  CAS  Google Scholar 

  244. • Zimmer HC, Brodribb TJ, Delzon S, Baker PJ. Drought avoidance and vulnerability in the Australian Araucariaceae. Tree Physiol. 2016;36:218–28. This article studies the mechanisms that some Araucariaceae have to cope with water scarcity and exposes the low tolerance of members in this family compared to other conifers.

  245. • Marchioro CA, Santos KL, Siminski A. Present and future of the critically endangered Araucaria angustifolia due to climate change and habitat loss. Forestry. 2020;93:401–10. This study exposes a good example of severe habitat loss due to anthropogenic disturbances and climate change in an endangered species in the Araucariaceae.

  246. Castro MB, Barbosa ACMC, Pompeu PV, Eisenlohr PV, de Assis PG, Apgaua DMG, et al. Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil? Biodivers Conserv. 2020;29:591–607.

    Article  Google Scholar 

  247. Saavedra A, Willhite E. Observations and recommendations regarding Araucaria araucana branch and foliage mortality (daño foliar de la Araucaria) in the national parks of south-central Chile. USDA Forest Service; 2017. Technical report. Available from: https://doi.org/10.13140/rg.2.2.20807.14248.

  248. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, et al. Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ. 2009;7:479–86.

    Article  Google Scholar 

  249. Pauchard A, Milbau A, Albihn A, Alexander J, Burgess T, Daehler C, et al. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions. 2016;18:345–53.

    Article  Google Scholar 

  250. Stone JK, Coop LB, Manter DK. Predicting effects of climate change on Swiss needle cast disease severity in Pacific Northwest forests. Can J Plant Path. 2008;30:169–76.

    Article  Google Scholar 

  251. •• Simler-Williamson AB, Rizzo DM, Cobb RC. Interacting effects of global change on forest pest and pathogen dynamics. Ann Rev Ecol Evol Syst. 2019;50:381–403. This review deals with the diverse manners in which changes in environmental conditions may drive emergence or intensification of pests and diseases, including the effects on the biotic stressors, on the hosts, and on the ecology of both.

  252. Burgess TI, Oliva J, Sapsford SJ, Sakalidis ML, Balocchi F, Paap T. Anthropogenic disturbances and the emergence of native diseases; a threat to forest health. Current Forestry Reports. 2022;[This Issue].

  253. NSW Department of Environment and Conservation. Wollemi Pine (Wollemia nobilis) recovery plan. Hurstville NSW.: NSW Department of Environment and Conservation; 2006. Report No.: DEC 2006/51.

  254. ProForest. Conducting forest health research abroad. [Internet]. Proactive forest health and resilience; 2017 [cited 01 Sept 2021]. Available from: http://proforesthealth.org/research/projects/conducting-forest-health-research-abroad.

  255. Winkworth RC, Bellgard SE, McLenachan PA, Lockhart PJ. The mitogenome of Phytophthora agathidicida: evidence for a not so recent arrival of the “kauri killing” Phytophthora in New Zealand. PloS one. 2021;16:e0250422.

    Article  CAS  Google Scholar 

  256. Hawksworth DL. The oldest sequenced fungal specimen. Lichenologist. 2013;45:131–2.

    Article  Google Scholar 

  257. • Oliva J, Ángel R, Stenlid J. Functional ecology of forest disease. Ann Rev Phytopathol. 2020;58:343–61. This review highlights the difficulties of assessing the impact of diseases on forests under a changing environment, with special consideration to diseases of complex aetiologies, and it proposes a framework to address this from a functional ecology perspective.

  258. Paap T, Wingfield MJ, Burgess TI, Hulbert JM, Santini A. Harmonising the fields of invasion science and forest pathology. NeoBiota. 2020;62:301–32.

    Article  Google Scholar 

  259. Paap T, Wingfield MJ, Burgess TI, Wilson JR, Richardson DM, Santini A. Invasion frameworks: a forest pathogen perspective. Curr For Rep. 2022. https://doi.org/10.1007/s40725-021-00157-4.

    Article  Google Scholar 

  260. Wondafrash M, Wingfield MJ, Wilson JR, Hurley BP, Slippers B, Paap T. Botanical gardens as key resources and hazards for biosecurity. Biodivers Conserv. 2021;30:1929–46.

    Article  Google Scholar 

  261. Paap T, Burgess TI, Wingfield MJ. Urban trees: bridge-heads for forest pest invasions and sentinels for early detection. Biol Invasions. 2017;19:3515–26.

    Article  Google Scholar 

  262. Sims LL, Garbelotto M. Phytophthora species repeatedly introduced in Northern California through restoration projects can spread into adjacent sites. Biol Invasions. 2021;23:2173–90.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brett Summerell, Edward Liew and Peter Scott for providing us with some of the disease images used in Figure 3.

Funding

This work was supported by the Tree Protection Cooperative Programme (TPCP), the Forestry and Agricultural Biotechnology Institute (FABI) and the University of Pretoria in South Africa; and the Chilean National Forest Corporation (Corporación Nacional Forestal, CONAF) and Bioforest S.A. Arauco in Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Barnes.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Felipe Balocchi, Michael J. Wingfield, Trudy Paap, Rodrigo Ahumada and Irene Barnes declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The submitted work has not been published and is not under consideration for publication in any other journal or book.

This article is part of the Topical Collection on Forest Pathology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balocchi, F., Wingfield, M.J., Paap, T. et al. Pathogens of the Araucariaceae: How Much Do We Know?. Curr Forestry Rep 8, 124–147 (2022). https://doi.org/10.1007/s40725-022-00164-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-022-00164-z

Keywords

Navigation