Skip to main content
Log in

Mean Flow and Mixing Properties of a Vertical Round Turbulent Buoyant Jet in a Weak Crosscurrent

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

This paper deals with the mean flow and mixing properties of a vertical round turbulent buoyant jet in a weak crosscurrent, through an implementation of the integral method. The phenomenon is described by the Reynolds averaged partial differential equations of continuity, momentum and conservation of tracer mass formulated in a curvilinear cylindrical coordinate system. Applying second order mathematical approximations, the equations are integrated on a reduced cross-sectional area of the jet under the similarity assumption and the boundary conditions. The reduced area by a cyclical sector provides increased entrainment due to the increase of its perimeter, which reduces the fluxes and affects the dilution, and the model predictions, mainly the dilutions, are considerably improved. A system of ordinary differential equations is produced, which is solved numerically using a 4th order Runge-Kutta method. The results obtained for several values of the normalized ratio of ambient over buoyant-jet exit velocity are compared with experimental data of normalized trajectories and dilutions available in the literature. The satisfactory performance of the integral model for weak current velocities makes it suitable for research, for studying effluent discharges in water bodies or in the atmosphere, as well as for design purposes.

Article Highlights

• A curvilinear cylindrical coordinate system is used.

• Reduced cross-sectional area is used in the bent-over phase.

• The integral model predictions for weak currents agree well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Data Availability

The data generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

An initial version of the paper has been included in the e-Proceedings of the “15th International Conference on Protection and Restoration of the Environment”, 2021, Patras, Greece, ISBN 978-618-82337-2-0.

Funding

No funding was received by the authors for this research.

Author information

Authors and Affiliations

Authors

Contributions

Both authors, Panayotis Yannopoulos and Aristeidis Bloutsos contributed to the study conception and implementation. The first draft of the manuscript was written by Aristeidis Bloutsos and both authors read, commented, and approved the final manuscript.

Corresponding author

Correspondence to A. A. Bloutsos.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Details in PDE Integration

PDE (1)-(4) are integrated on the cross-sectional area A under the boundary conditions and assumptions given in the main text. Fluxes are reduced by a factor \(I=1-\frac{\omega }{2\uppi}\), while the cross-sectional perimeter is increased and equal to 2πR = 2π(1 + fπI)Bw.

Continuity:

$${\int}_A\frac{\partial (rhu)}{\partial r}\mathrm{d}r\mathrm{d}\varphi +{\int}_A\frac{\partial (rw)}{\partial \xi}\mathrm{d}r\mathrm{d}\varphi =0$$
(A.1)

\({A}_1={\int}_A\frac{\partial (rhu)}{\partial r}\mathrm{d}r\mathrm{d}\varphi ={\int}_0^{2\uppi}R{(hu)}_R\mathrm{d}\varphi =R{\int}_0^{2\uppi}{h}_R\left({u}_R+{u}_a\sin \theta \sin \varphi \right)\mathrm{d}\varphi =2\uppi R\left({u}_{1R}+{u}_{2R}\right)\), where u1R = hRuR, \({u}_{2R}=\frac{R}{2}{u}_a\sin \theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi }\) and \({h}_R=1+R\sin \varphi \frac{\mathrm{d}\theta }{\mathrm{d}\xi }\)

\({A}_2=I{\int}_A\frac{\partial (rw)}{\partial \xi}\mathrm{d}r\mathrm{d}\varphi =I\frac{\mathrm{d}}{\mathrm{d}\xi}\int_0^{2\uppi}\int_0^{B_w}r\left({w}_1+{u}_a\cos \theta \right)\mathrm{d}r\mathrm{d}\varphi -I{\int}_0^{2\uppi}{B}_w{\left({u}_a\cos \theta \right)}_{B_w}\mathrm{d}\varphi \frac{\mathrm{d}{B}_w}{\mathrm{d}\xi }=\frac{\mathrm{d}\overset{\sim }{\mu }}{\mathrm{d}\xi }-2I\uppi {B}_w\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi }{u}_a\cos \theta\), where the Leibniz rule has been applied; \({h}_B=1+{B}_w\sin \varphi \frac{\mathrm{d}\theta }{\mathrm{d}\xi }\ {\overset{\sim }{h}}_B=1-{B}_w\sin \varphi \frac{\mathrm{d}\theta }{\mathrm{d}\xi }\), \({h}_B{\overset{\sim }{h}}_B\approx 1\), \(\overset{\sim }{\mu }=\mu +I\uppi {B}_w^2{u}_a\cos \theta\), \(\frac{\mathrm{d}\mu }{\mathrm{d}\xi }=-2\uppi R{u}_{1R}\), \(\mu =I\uppi {b}_w^2{w}_m\), \({u}_{1R}=-{K}_w\left\{\frac{1}{2}\left(2+\frac{\xi\ \mathrm{d}{w}_m}{w_m\ \mathrm{d}\xi}\right)\left[1-\exp \left(-{n}_R^2\right)\right]{n}_R^{-1}-n\exp \left(-{n}_R^2\right)\right\}\), nR = R/bw (Yannopoulos 2006).

Since A1 + A2 = 0, then

$$\frac{\mathrm{d}\overset{\sim }{\mu }}{\mathrm{d}\xi }=-2\uppi R{u}_e=\frac{\mathrm{d}\mu }{\mathrm{d}\xi }+\uppi \left(2{IB}_w\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi}\cos \theta -{R}^2\sin \theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi}\right){u}_a$$
(A.2)

ψ-momentum

$${\int}_A\frac{\partial }{\partial r}\left[r\sin \varphi\ h\left({u}^2+\frac{p_d}{\rho_0}\right)\right]\mathrm{d}r\mathrm{d}\varphi +{\int}_A\frac{\partial }{\partial \xi}\left[r\sin \varphi \left( uw-\frac{\tau_{r\xi}}{\rho_0}\right)\right]\mathrm{d}r\mathrm{d}\varphi +{\int}_Ar\left({w}^2+{w}^{\prime 2}+\frac{p_d}{\rho_0}\right)\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\mathrm{d}r\mathrm{d}\varphi =-{\int}_A{g}_0^{\prime } rhc\ \cos \theta\ \mathrm{d}r\mathrm{d}\varphi$$
(A.3)
$${B}_1={\int}_0^{2\uppi}R\sin \varphi\ {h}_R\left[{\left({u}_R+{u}_a\sin \theta \sin \varphi \right)}^2-\frac{p_d}{\rho_0}\right]\mathrm{d}\varphi \cong {\int}_0^{2\uppi}R\sin \varphi\ {h}_R{u}_R^2\mathrm{d}\varphi +{\int}_0^{2\uppi}2R\sin \varphi\ {h}_R{u}_R{u}_a\sin \theta \sin \varphi \mathrm{d}\varphi +{\int}_0^{2\uppi}R\sin \varphi\ {h}_R{u}_a^2{\sin}^2\theta {\sin}^2\varphi \mathrm{d}\varphi =-\uppi {R}^2{\left({u}_{1R}+{u}_{2R}\right)}^2\frac{\mathrm{d}\theta }{\mathrm{d}\xi }+2\uppi R\left({u}_{1R}+{u}_{2R}\right){u}_a\sin \theta +\frac{3\uppi}{4}{R}^2{u}_a^2{\sin}^2\theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi }$$
$${B}_2=\int_0^{2\uppi}\int_0^{B_w}I\frac{\partial }{\partial \xi}\left(r\sin \varphi\ uw\right)\mathrm{d}r\mathrm{d}\varphi =I\frac{\mathrm{d}}{\mathrm{d}\xi}\int_0^{2\uppi}\int_0^{B_w}r\sin \varphi \left({u}_1+{u}_2+{u}_a\sin \theta \sin \varphi \right)\left({w}_1+{u}_a\cos \theta \right)\mathrm{d}r\mathrm{d}\varphi -I{\int}_0^{2\uppi}{B}_w\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi}\sin \varphi\ \left(\frac{u_{1B}+{u}_{2B}}{h_B{\overset{\sim }{h}}_B}{\overset{\sim }{h}}_B+{u}_a\sin \theta \sin \varphi \right)\left({w}_{1B}+{u}_a\cos \theta \right)\mathrm{d}\varphi =\frac{u_a}{2}\sin \theta \frac{\mathrm{d}\mu }{\mathrm{d}\xi }+\frac{\mu }{2}{u}_a\cos \theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi }+\frac{\uppi}{2}I{B}_w^2{u}_a^2\left({\cos}^2\theta -{\sin}^2\theta \right)\frac{\mathrm{d}\theta }{\mathrm{d}\xi }+\uppi I{B}_w^2\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi}\left({u}_{1B}+{u}_{2B}\right)\cos \theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi }$$
$${B}_3=\int_0^{2\uppi}\int_0^{B_w} Ir\left[{\left({w}_1+{u}_a\cos \theta \right)}^2+\frac{p_d}{\rho_0}\right]\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\mathrm{d}r\mathrm{d}\varphi =\overset{\sim }{m}\frac{\mathrm{d}\theta }{\mathrm{d}\xi }$$
$${B}_4=\int_0^{2\uppi}\int_0^{B_w}I{g}_0^{\prime } rhc\ \cos \theta\ \mathrm{d}r\mathrm{d}\varphi =\zeta \cos \theta$$
$${B}_5=\int_0^{2\uppi}\int_0^{B_w}I\frac{\partial }{\partial r}\left(\frac{p_d}{\rho_0} rh\ \sin \varphi\ \right)\mathrm{d}r\mathrm{d}\varphi \cong 0$$

where \(\overset{\sim }{m}=m+2\mu\ {u}_a\cos \theta +I\uppi {B}_w^2{u}_a^2{\cos}^2\theta\), \(\zeta =I\uppi {g}_0^{\prime }{b}_c^2{c}_m\), \({u}_{2B}=\frac{B_w}{2}{u}_a\sin \theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi }\), w1B ≅ 0 and u1B is calculated using the relationship for u1R and substituting R = Bw.

Since B1 + B2 − B3 =  − B4 − B5, after substitution and solution with respect to \(\frac{\mathrm{d}\theta }{\mathrm{d}\xi }\), the following equation is derived:

$$\frac{d\theta}{d\xi}=\frac{\zeta cos\theta +\pi R{u}_1{u}_a sin\theta}{D}$$
(A.4)

where \(D=\overset{\sim }{m}+\uppi {R}^2\left[{\left({u}_{1R}+{u}_{2R}\right)}^2-\frac{7}{4}{u}_a^2{\sin}^2\theta \right]-\left[\frac{\mu }{2}+\uppi I{B}_w^2\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi}\left({u}_{1B}+{u}_{2B}\right)\right]{u}_a\cos \theta -\frac{\uppi}{2}I{B}_w^2{u}_a^2\cos 2\theta\).

ξ – momentum

$${\int}_A\frac{\partial }{\partial r}\left[ rh\left( uw-\frac{\tau_{r\xi}}{\rho_0}\right)\right]\mathrm{d}r\mathrm{d}\varphi +{\int}_A\frac{\partial }{\partial \xi}\left[r\left({w}^2+{w}^{\prime 2}+\frac{p_d}{\rho_0}\right)\right]\mathrm{d}r\mathrm{d}\varphi +{\int}_Ar\sin \varphi \left( uw-\frac{\tau_{r\xi}}{\rho_0}\right)\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\mathrm{d}r\mathrm{d}\varphi ={\int}_A{g}_0^{\prime } rhc\ sin\theta\ \mathrm{d}r\mathrm{d}\varphi$$
(A.5)
$${\varGamma}_1={\int}_0^{2\uppi}R\ {h}_R\left[\left({u}_R+{u}_a\sin \theta \sin \varphi \right)\left({w}_{1R}+{u}_a\cos \theta \right)-\frac{\tau_{R\xi}}{\rho_0}\right]\mathrm{d}\varphi =2\uppi R\left({u}_{1R}+{u}_{2R}\right){u}_a\cos \theta +\uppi {R}^2{u}_a^2\sin \theta \cos \theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi }$$
$${\varGamma}_2=\int_0^{2\uppi}\int_0^{B_w}I\frac{\partial }{\partial \xi}\left\{r\left[{\left({w}_1+{u}_a\cos \theta \right)}^2+{\mathrm{w}}^{\prime 2}+\frac{p_d}{\rho_0}\right]\right\}\mathrm{d}r\mathrm{d}\varphi =\frac{\mathrm{d}\overset{\sim }{m}}{\mathrm{d}\xi }-\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi }{\int}_0^{2\uppi}I{B}_w\left[{\left({w}_{1R}+{u}_a\cos \theta \right)}^2+{w}_{1R}^{\prime 2}+{\left(\frac{p_d}{\rho_0}\right)}_R\right]\mathrm{d}\varphi =\frac{\mathrm{d}\overset{\sim }{m}}{\mathrm{d}\xi }-2\uppi I{B}_w\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi }{u}_a^2{\cos}^2\theta$$
$${\varGamma}_3=\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\int_0^{2\uppi}\int_0^{B_w} Ir\ \sin \varphi \left[\left(\frac{u_1+{u}_2}{h}+{u}_a\sin \theta \sin \varphi \right)\left({w}_1+{u}_a\cos \theta \right)-\frac{\tau_{r\xi}}{\rho_0}\right]\mathrm{d}r\mathrm{d}\varphi =\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\left\{\int_0^{2\uppi}\int_0^{B_w} Ir\ \sin \varphi \left(\frac{u_1+{u}_2}{h\overset{\sim }{h}}\overset{\sim }{h}{w}_1-\frac{\tau_{r\xi}}{\rho_0}\right)\mathrm{d}r\mathrm{d}\varphi +\int_0^{2\uppi}\int_0^{B_w} Ir\ \sin \varphi \left(\frac{u_1+{u}_2}{h\overset{\sim }{h}}\overset{\sim }{h}{u}_a\cos \theta \right)\mathrm{d}r\mathrm{d}\varphi +\int_0^{2\uppi}\int_0^{B_w} Ir\ {w}_1{u}_a\sin \theta {\sin}^2\varphi \mathrm{d}r\mathrm{d}\varphi +\int_0^{2\uppi}\int_0^{B_w} Ir\ {u}_a^2\sin \theta \cos \theta {\sin}^2\varphi \mathrm{d}r\mathrm{d}\varphi \right\}=\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\left[-\uppi I{b}_w^3{w}_m^2\frac{\mathrm{d}\theta }{\mathrm{d}\xi }{I}_1-\frac{\uppi}{2}I{u}_a\sin \theta {\left(\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\right)}^2{b}_w^4{w}_m{I}_2-\uppi I{u}_a\cos \theta \frac{\mathrm{d}\theta }{\mathrm{d}\xi }{b}_w^3{w}_m{I}_3-\frac{\uppi}{8}I{u}_a^2\sin \theta \cos \theta {\left(\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\right)}^2{B}_w^4+\frac{\uppi}{2}\mu {u}_a\sin \theta +\frac{\uppi}{2}I{B}_w^2{u}_a^2\sin \theta \cos \theta \right]=\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\left[\frac{\uppi}{2}{u}_a\sin \theta \left(\mu +I{B}_w^2{u}_a\cos \theta \right)-\frac{\uppi}{8}I{u}_a\sin {\theta b}_w^4\left(4{w}_m{I}_2+{n}_B^4{u}_a\cos \theta \right){\left(\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\right)}^2\right]$$
$${\varGamma}_4=\int_0^{2\uppi}\int_0^{B_w}I{g}_0^{\prime } rhc\ \sin \theta\ \mathrm{d}r\mathrm{d}\varphi =\zeta \sin \theta$$

where \({I}_1={\int}_0^{n_B}{n}^2\frac{u_1}{w_m}\frac{w_1}{w_m}\mathrm{d}n\) and −0.00427 ≤ I1 ≤ 0.00844 for Kw = 0.11, \(-1\le {s}_1=\frac{\xi }{w_m}\frac{\mathrm{d}{w}_m}{\mathrm{d}\xi}\le -\frac{1}{3}\) (Yannopoulos 2006); thus I1 ≅ 0; \({I}_2={\int}_0^{n_B}{n}^3\frac{w_1}{w_m}\mathrm{d}n\cong \frac{1-3{\mathrm{e}}^{-2}}{2}=0.2970\); \({I}_3={\int}_0^{n_B}{n}^2\frac{u_1}{w_m}\mathrm{d}n=-\frac{K_w}{4}\left[{s}_1+\left(8+{s}_1\right){\mathrm{e}}^{-2}\right]\) and −0.0194 ≤ I3 ≤ 0.00145 for Kw = 0.11, \({n}_B=\sqrt{2}\), \(-1\le {s}_1\le -\frac{1}{3}\); thus I3 ≅ 0.

Since Γ1 + Γ2 + Γ3 = Γ4, after substitution and solution with respect to \(\frac{\mathrm{d}\overset{\sim }{m}}{\mathrm{d}\xi }\), the following equation is derived:

$$\frac{\mathrm{d}\overset{\sim }{m}}{\mathrm{d}\xi }=\zeta cos\theta -\uppi {u}_a\left\{2\cos \theta \left(R{u}_{1R}-I{B}_w\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi }{u}_a\cos \theta \right)+\frac{sin\theta}{2}\left[\mu +\left(I{B}_w^2+4{R}^2\right){u}_a\cos \theta -I{b}_w^4\left({I}_2{w}_m+\frac{1}{4}{n}_B^4{u}_a\cos \theta \right){\left(\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\right)}^2\right]\frac{\mathrm{d}\theta }{\mathrm{d}\xi}\right\}$$
(A.6)

Tracer conservation

$${\int}_A\frac{\partial \left[ rh\left( uc+{u}^{\prime }{c}^{\prime}\right)\right]}{\partial r}\mathrm{d}r\mathrm{d}\varphi +{\int}_A\frac{\partial \left[r\left( wc+{w}^{\prime }{c}^{\prime}\right)\right]}{\partial \xi}\mathrm{d}r\mathrm{d}\varphi =0$$
(A.7)
$${\varDelta}_1={\int}_0^{2\uppi}R\ {h}_R\left[{u}_R{c}_R+{\left({u}^{\prime }{c}^{\prime}\right)}_R\right]\mathrm{d}\varphi =0$$
$${\varDelta}_2=\frac{\mathrm{d}}{\mathrm{d}\xi}\int_0^{2\uppi}\int_0^{B_w} Ir\left[\left({w}_1+{u}_a\cos \theta \right)c+{w}^{\prime }{c}^{\prime}\right]\mathrm{d}r\mathrm{d}\varphi -\frac{\mathrm{d}{B}_w}{\mathrm{d}\xi }{\int}_0^{2\uppi}I{B}_w\left[\left({w}_{1B}+{u}_a\cos \theta \right){c}_B+{\left({w}^{\prime }{c}^{\prime}\right)}_B\right]\mathrm{d}\varphi =\frac{1}{g_0^{\prime }}\frac{\mathrm{d}\overset{\sim }{\beta }}{\mathrm{d}\xi }=0$$

where cR = cB = (uc)R = (wc)B = 0; \(\overset{\sim }{\beta }=\beta +\zeta {u}_a\cos \theta\) and, thus,

$$\beta ={\beta}_0-{u}_a\left(\zeta \cos \theta -{\zeta}_0\cos {\theta}_0\right)$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloutsos, A.A., Yannopoulos, P.C. Mean Flow and Mixing Properties of a Vertical Round Turbulent Buoyant Jet in a Weak Crosscurrent. Environ. Process. 9, 30 (2022). https://doi.org/10.1007/s40710-022-00582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40710-022-00582-y

Keywords

Navigation