Skip to main content
Log in

Abstract

In this paper, we present a modal data processing methodology, for reconstructing high resolution surfaces from measured slope data, over rectangular apertures. One of the primary goals is the ability to effectively reconstruct deflectometry measurement data for high resolution and freeform surfaces, such as telescope mirrors. We start by developing a gradient polynomial basis set which can quickly generate a very high number of polynomial terms. This vector basis set, called the G polynomials set, is based on gradients of the Chebyshev polynomials of the first kind. The proposed polynomials represent vector fields that are defined as the gradients of scalar functions. This method yields reconstructions that fit the measured data more closely than those obtained using conventional methods, especially in the presence of defects in the mirror surface and physical blockers/markers such as fiducials used during deflectometry measurements. We demonstrate the strengths of our method using simulations and real metrology data from the Daniel K. Inouye Solar Telescope (DKIST) primary mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 18.3 Definitions. DLMF: 18.3 definitions. N.p., n.d. Web. Retrieved July 25, 2017 from http://dlmf.nist.gov/18.3.

  2. Daniel K. Inouye solar telescope. N.p., n.d. Web. Retrieved July 31, 2017 from http://dkist.nso.edu/.

  3. Chung, S., Song, S. E., & Cho, Y. T. (2017). Effective software solutions for 4D printing: A review and proposal. International Journal of Precision Engineering and Manufacturing., 4, 359.

    Article  Google Scholar 

  4. Els, S., Lock, T., Comoretto, G., Gracia, G., O’Mullane, W., Cheek, N., et al. (2014). The commissioning of Gaia. Proceedings of SPIE, 9150, 91500A.

    Google Scholar 

  5. Fox, L., & Parker, J. B. (1968). Approximation. Minimax and least-squares theories. Chebyshev polynomials in numerical analysis (pp. 1–17). London: Oxford U Pr.

    Google Scholar 

  6. Franceschini, F., Galetto, M., Maisano, D., & Mastrogiacomo, L. (2014). Large-scale dimensional metrology (LSDM): From tapes and theodolites to multi-sensor systems. International Journal of Precision Engineering and Manufacturing, 15, 1739.

    Article  Google Scholar 

  7. Jüptner, W., & Bothe, T. (2009). Sub-nanometer resolution for the inspection of reflective surfaces using white light. Proceedings of SPIE, 7405, 740502.

    Article  Google Scholar 

  8. Kim, B. C. (2015). Development of aspheric surface profilometry using curvature method. International Journal of Precision Engineering and Manufacturing, 16, 1963.

    Article  Google Scholar 

  9. Kim, D. W., Aftab, M., Choi, H., Graves, L., & Trumper, I. (2016). Optical metrology systems spanning the full spatial frequency spectrum, FW5G.4. Washington: Optical Society of America.

    Google Scholar 

  10. Kim, D. W., Su, P., Oh, C. J., and Burge, J. H., Extremely large freeform optics manufacturing and testing, In 2015 Conference on lasers and electro-optics pacific rim, (Optical Society of America, 2015), paper 26F1_1.

  11. Kim, D., Su, T., Su, P., Oh, C., Graves, L., & Burge, J. (2015). Accurate and rapid IR metrology for the manufacture of freeform optics. SPIE Newsroom. https://doi.org/10.1117/2.1201506.006015.

    Google Scholar 

  12. Knauer, M. C., Kaminski, J., & Hausler, G. (2004). Phase measuring deflectometry: A new approach to measure specular free-form surfaces. Proceedings of SPIE, 5457, 366.

    Article  Google Scholar 

  13. Li, M., Li, D., Jin, C., Yuan, X., Xiong, Z., & Wang, Q. (2017). Improved zonal integration method for high accurate surface reconstruction in quantitative deflectometry. Applied Optics, 56, F144–F151.

    Article  Google Scholar 

  14. Li, M., Li, D., Zhang, C., Wang, Q., & Chen, H. (2015). Modal wavefront reconstruction from slope measurements for rectangular apertures. Journal of the Optical Society of America A, 32, 1916–1921.

    Article  Google Scholar 

  15. Liu, F., Robinson, B. M., Reardon, P. J., & Geary, J. M. (2001). Analyzing optics test data on rectangular apertures using 2-D Chebyshev polynomials. Optical Engineering, 50(4), 043609–043618.

    Article  Google Scholar 

  16. Mahajan, V. N. (2010). Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils. Applied Optics, 49, 6924–6929.

    Article  Google Scholar 

  17. Mahajan, V. N. (2013). Optical imaging and aberrations, Part III: Wavefront analysis . Bellingham: SPIE Press.

    Book  Google Scholar 

  18. Mason, J. C., & Christopher, D. (2003). Handscomb. Chebyshev polynomials. Boca Raton: Chapman & Hall.

    Google Scholar 

  19. Oh, C., Lowman, A. E., Smith, G. A., Su, P., Huang, R., Su, T., et al. (2016). Fabrication and testing of 4.2 m off-axis aspheric primary mirror of Daniel K. Inouye solar telescope. Proceedings of SPIE Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 9912, 99120O.

    Article  Google Scholar 

  20. Polidan, R. S., Breckinridge, J. B., Lillie, C. F., MacEwen, H. A., Flannery, M. R., Dailey, D. R., et al. (2015). An evolvable space telescope for future astronomical missions 2015 update. Proceedings of SPIE, 9602, 960207.

    Article  Google Scholar 

  21. Primot, J., Rousset, G., & Fontanella, J. C. (1990). Deconvolution from wave-front sensing: A new technique for compensating turbulence-degraded images. Journal of the Optical Society of America A. Optics and Image Science, 7, 1598–1608.

    Article  Google Scholar 

  22. Rivlin, T. J. (1974). The Chebyshev polynomials. New York: Wiley.

    MATH  Google Scholar 

  23. Smith, G. A., Lewis, B. J., Palmer, M., Kim, D. K., Loeff, A. R., & Burge, J. H. (2012). Open source data analysis and visualization software for optical engineering. Proceedings of SPIE, 8487, 84870F.

    Article  Google Scholar 

  24. Southwell, W. H. (1980). Wave-front estimation from wave-front slope measurements. Journal of the Optical Society of America A, 70, 998–1006.

    Article  Google Scholar 

  25. Su, T. (2014). Asphercial metrology for non-specular surfaces with the scanning long-wave optical test system . Tucson: University of Arizona (Academic).

    Google Scholar 

  26. Su, P., Khreishi, M. H., Su, T., Huang, R., Dominguez, M. Z., Maldonado, A., et al. (2013). Aspheric and freeform surfaces metrology with software configurable optical test system: A computerized reverse Hartmann test. Optical Engineering, 53(3), 031305–031316.

    Article  Google Scholar 

  27. Su, T., Park, W. H., Parks, R. E., Su, P., & Burge, J. H. (2011). Scanning long-wave optical test system: A new ground optical surface slope test system. Proceedings of SPIE, 8126, 81260E.

    Article  Google Scholar 

  28. Su, P., Parks, R. E., Wang, L., Angel, R. P., & Burge, J. H. (2010). Software configurable optical test system: a computerized reverse Hartmann test. Applied Optics, 49, 4404–4412.

    Article  Google Scholar 

  29. Su, P., Wang, Y., Burge, J., Kaznatcheev, K., & Idir, M. (2012). Non-null full field X-ray mirror metrology using SCOTS: A reflection deflectometry approach. Optics Express, 20, 12393–12406.

    Article  Google Scholar 

  30. Su, T., Wang, S., Parks, R. E., Su, P., & Burge, J. H. (2013). Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation. Applied Optics, 52, 7117–7126.

    Article  Google Scholar 

  31. Tan, G., Zhang, L., Liu, S., & Zhang, W. (2015). A fast and differentiated localization method for complex surfaces inspection. International Journal of Precision Engineering and Manufacturing, 16, 2631.

    Article  Google Scholar 

  32. Tang, Y., Su, X., Liu, Y., & Jing, H. (2008). 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry. Optics Express, 16, 15090–15096.

    Article  Google Scholar 

  33. Zhao, C., & Burge, J. H. (2007). Orthonormal vector polynomials in a unit circle, part I: Basis set derived from gradients of Zernike polynomials. Optics Express, 15, 18014–18024.

    Article  Google Scholar 

  34. Zhao, C., & Burge, J. H. (2008). Orthonormal vector polynomials in a unit circle, part II: Completing the basis set. Optics Express, 16, 6586–6591.

    Article  Google Scholar 

  35. Zwillinger, D. (2003). Special functions. CRC standard mathematical tables and formulae (31st ed., pp. 532–538). Boca Raton: CRC.

    Google Scholar 

Download references

Acknowledgements

This material is partly based on work performed for the DKIST. DKIST is managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy Inc. under a cooperative agreement with the National Science Foundation. Also, it is based in part upon work performed for the “Post-processing of Freeform Optics” project supported by the Korea Basic Science Institute. The deflectometry related software development is partially funded by the II–VI Foundation Block grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Wook Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix 1

See Fig. 12.

Fig. 12
figure 12

Quiver plots of a few gradient polynomials

1.2 Appendix 2

1.2.1 Orthonormality of the vector gradient polynomials

G polynomial orthogonality can be observed by noting that the dot product of two G polynomials is orthogonal:

$$\mathop {\iint }\limits_{ - 1}^{1} \left[ {\vec{G}_{j} \left( {x,y} \right) \cdot \vec{G}_{{j^{\prime}}} \left( {x,y} \right)} \right]\sqrt {1 - x^{2} } \sqrt {1 - y^{2} } dxdy = \left\{ {\begin{array}{l} {0, j \ne j^{{\prime }} } \\ {N_{G} , j = j^{{\prime }} } \\ \end{array} .} \right.$$
(A.1)

Next, we demonstrate the G polynomials’ orthonormality using the expanded form of the polynomials (from Eq. (7)):

$$\frac{1}{{N_{G} }}\mathop {\iint }\limits_{ - 1}^{1} \left[ \begin{aligned} &\left\{ {T_{n} \left( y \right)T_{m}^{{\prime }} (x)\hat{i} + T_{m} \left( x \right)T_{n}^{{\prime }} (y)\hat{j}} \right\} \cdot \hfill \\ & \left\{ {T_{{n{\prime }}} \left( y \right)T_{m{\prime}}^{{\prime }}(x)\hat{i} + T_{{m{\prime }}} \left( x \right)T_{n{\prime}}^{{\prime }} (y)\hat{j}} \right\} \hfill \\ & \sqrt {1 - x^{2} } \sqrt {(1 - y^{2} } \hfill \\ \end{aligned} \right]dxdy = \delta_{{mm{\prime }}} \delta_{{nn{\prime }}} ,$$
(A.2)

where \(m,\text{ }m^{{\prime }} ,\text{ }n,\) and \(n^{{\prime }}\) are integers used for indexing and \(N_{G}\) is the normalization factor, which is given by,

$$N_{G} = \left\{ \begin{aligned}& \frac{{\pi^{2} n^{2} }}{4},\;m = 0 \hfill \\ & \frac{{\pi^{2} m^{2} }}{4},\;n = 0 \hfill \\ & \frac{{\pi^{2} }}{8}\left( {m^{2} + n^{2} } \right) ,\;{\text{otherwise}} \hfill \\ \end{aligned} \right..$$
(A.3)

The proof of this derivation and details on how to obtain the normalization factor are as follows:

$$\begin{aligned} I = & \mathop {\iint }\limits_{ - 1}^{1} (G_{j} \cdot G_{{j^{\prime}}} )\sqrt {1 - x^{2} } \sqrt {1 - y^{2} } dxdy \\ = & \mathop {\iint }\limits_{ - 1}^{1} T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)T_{m}^{{\prime }} \left( x \right)T_{{m^{{\prime }} }}^{{\prime }} \left( x \right)\sqrt {1 - x^{2} } \sqrt {1 - y^{2} } dxdy \\ & + \mathop {\iint }\limits_{ - 1}^{1} T_{m} \left( x \right)T_{{m^{{\prime }} }} \left( x \right)T_{n}^{{\prime }} \left( y \right)T_{{n^{{\prime }} }}^{{\prime }} \left( y \right)\sqrt {1 - x^{2} } \sqrt {1 - y^{2} } dxdy. \\ \end{aligned}$$
(A.4)

The first integral I1 can be expressed as:

$$\begin{aligned} I_{1} = & \mathop {\iint }\limits_{ - 1}^{1} T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)T_{m}^{{\prime }} \left( x \right)T_{{m^{{\prime }} }}^{{\prime }} \left( x \right)\sqrt {1 - x^{2} } \sqrt {1 - y^{2} } dxdy \\ = & \mathop \int \limits_{ - 1}^{1} T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)\sqrt {1 - y^{2} } \mathop \int \limits_{ - 1}^{1} T_{m}^{{\prime }} \left( x \right)T_{{m^{{\prime }} }}^{{\prime }} \left( x \right)\sqrt {1 - x^{2} } dy dx \\ T_{m} \left( x \right) = & \cos \left( {m\cos^{ - 1} (x)} \right). \\ \end{aligned}$$
(A.5)

Then, the following substitutions and subsequent equations can be used:

$$x = \cos \left( t \right),\quad dx = - \sin \left( t \right)dt,\quad \sin \left( t \right) = \sqrt {1 - x^{2} } ,$$
$$\begin{aligned} I_{1} = & \mathop \int \limits_{ - 1}^{1} T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)\sqrt {1 - y^{2} } \\ & \mathop \int \limits_{\pi }^{0} \frac{{m \sin \left( {m\cos^{ - 1} (x)} \right) m^{{\prime }} \sin \left( {m^{{\prime }} \cos^{ - 1} (x)} \right)}}{\sin \left( t \right)}\left( { - \sin \left( t \right)} \right)dt dy, \\ \end{aligned}$$
$$I_{1} = \mathop \int \limits_{ - 1}^{1} (T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)\sqrt {1 - y^{2} } dy \frac{{\left( { - mm^{{\prime }} } \right)\left[ {m\cos \left( {\pi m} \right)\sin \left( {\pi m^{{\prime }} } \right)} \right]}}{{m^{2} - m^{{{\prime }2}} }}.$$
(A.6)

This integral goes to zero for all values of m and m’ (except for when \(m = m^{{\prime }}\)), since \(\sin (\pi m) = 0\) for all integer values of m. However, when \(m = m^{{\prime }}\),

$$I_{1} = \mathop \int \limits_{ - 1}^{1} T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)\sqrt {1 - y^{2} } \mathop \int \limits_{\pi }^{0} \sin \left( {mt} \right)\sin \left( {mt} \right)dt dy.$$
(A.7)

Using the identity,

$$\sin^{2} \left( x \right) = \frac{{1 - \cos \left( {2x} \right)}}{2},$$
$$I_{1} = \mathop \int \limits_{ - 1}^{1} T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)\sqrt {1 - y^{2} } dy \left( - \frac{{m^{2} }}{2}\left[ {\frac{{\sin \left( {2\pi m} \right)}}{2m} - \pi } \right]\right) \delta_{{mm^{{\prime }} }} .$$
(A.8)

As before, \(\sin (2\pi m) = 0\) for all integer values of m. Thus,

$$\begin{aligned} I_{1} = & \frac{{\pi mm^{{\prime }} }}{2}\delta_{{mm^{{\prime }} }} \mathop \int \limits_{ - 1}^{1} T_{n} \left( y \right)T_{{n^{{\prime }} }} \left( y \right)\sqrt {1 - y^{2} } dy = \frac{{\pi m^{2} }}{2}\delta_{{mm^{{\prime }} }} \\ & \mathop \int \limits_{ - 1}^{1} \cos \left( {n\cos^{ - 1} (y)} \right)\cos \left( {n^{{\prime }} \cos^{ - 1} (y)} \right)\sqrt {1 - y^{2} } dy. \\ \end{aligned}$$
(A.9)

Using the same substitutions as before,

$$y = \cos \left( t \right),\quad dy = - \sin \left( t \right)dt,\quad \sin \left( t \right) = \sqrt {1 - y^{2} } ,$$
$$I_{1} = \frac{{\pi m^{2} }}{2}\delta_{{mm^{{\prime }} }} \mathop \int \limits_{\pi }^{0} \cos \left( {nt} \right)\cos \left( {n^{{\prime }} t} \right)\left( { - \sin^{2} \left( t \right)} \right)dt.$$
(A.10)

Again using the trigonometric identity for the square of the sine function,

$$\begin{aligned} I_{1} = & - \frac{{\pi m^{2} }}{2}\delta_{{mm^{{\prime }} }} \mathop \int \limits_{\pi }^{0} \cos \left( {nt} \right)\cos \left( {n^{{\prime }} t} \right)\left( {\frac{{1 - \cos \left( {2t} \right)}}{2}} \right)dt \\ = & - \frac{{\pi m^{2} }}{2}\delta_{{mm^{{\prime }} }} \\ & \left( \begin{aligned} - \frac{1}{4} \left\{ \begin{aligned} \frac{{\sin \left( {\pi \left( {n - n^{{\prime }} - 2} \right)} \right)}}{{n - n^{{\prime }} - 2}} + \frac{{\sin \left( {\pi \left( {n - n^{{\prime }} + 2} \right)} \right)}}{{n - n^{{\prime }} + 2}} \hfill \\ + \frac{{\sin \left( {\pi \left( {n + n^{{\prime }} - 2} \right)} \right)}}{{n + n^{{\prime }} - 2}} + \frac{{\sin \left( {\pi \left( {n + n^{{\prime }} + 2} \right)} \right)}}{{n + n^{{\prime }} + 2}} \hfill \\ \end{aligned} \right\} \hfill \\ - \left\{ {\frac{{n^{{\prime }} \cos \left( {\pi n} \right)\sin \left( {\pi n^{{\prime }} } \right) - n\sin \left( {\pi n} \right)\cos \left( {\pi n^{{\prime }} } \right)}}{{n^{2} - n^{{{\prime }2}} }}} \right\} \hfill \\ \end{aligned} \right). \\ \end{aligned}$$
(A.11)

This integral equals zero for all values of n and n’, except when \(n = n^{{\prime }}\), in which case the integral is,

$$\begin{aligned} I_{1} = - \frac{{\pi m^{2} }}{2}\delta_{{mm^{\prime}}} \mathop \int \limits_{\pi }^{0} \cos^{2} \left( {nt} \right)\left( {\frac{{1 - \cos \left( {2t} \right)}}{2}} \right)dt \hfill \\ = \frac{{\pi m^{2} }}{4}\delta_{{mm^{\prime}}} \left[ {\left\{ {\frac{{2\pi n + \sin \left( {2\pi n} \right)}}{4n}} \right\} + \left\{ {\frac{{n\sin \left( {2\pi n} \right)}}{{4\left( {n^{2} - 1} \right)}}} \right\}} \right]\delta_{{nn^{\prime}}} . \hfill \\ \end{aligned}$$
(A.12)

All of the sine terms become zero since n is an integer, so,

$$I_{1} = \frac{{\pi^{2} m^{2} }}{8}\delta_{{mm^{{\prime }} }} \delta_{{nn^{{\prime }} }} .$$
(A.13)

Similarly for I2,

$$I_{2} = \frac{{\pi^{2} n^{2} }}{8}\delta_{{mm^{{\prime }} }} \delta_{{nn^{{\prime }} }} .$$
(A.14)

Now the original integral becomes:

$$I = \frac{{\pi^{2} m^{2} }}{8}\delta_{{mm^{{\prime }} }} \delta_{{nn^{{\prime }} + }} \frac{{\pi^{2} n^{2} }}{8}\delta_{{mm^{{\prime }} }} \delta_{{nn^{{\prime }} }} = \frac{{\pi^{2} }}{8}\delta_{{mm^{{\prime }} }} \delta_{{nn^{{\prime }} }} \left( {m^{2} + n^{2} } \right).$$
(A.15)

Next we address the cases in which either m = 0 or n = 0. When \(m = 0,\text{ }I_{1} = 0\) since,

$$T_{{m^{{\prime }} }}^{{\prime }} \left( x \right) = T_{m}^{{\prime }} \left( x \right) = 0,$$

so

$$I = I_{2} = \mathop {\iint }\limits_{ - 1}^{1} T_{n}^{{\prime }} \left( y \right)T_{{n^{{\prime }} }}^{{\prime }} \left( y \right)\sqrt {1 - x^{2} } \sqrt {1 - y^{2} } dxdy,$$
(A.16)

where we used the fact that

$$T_{{m^{{\prime }} }} \left( x \right) = T_{m} \left( x \right) = 1.$$
(A.17)

Following the same steps as before,

$$I = \frac{{\pi^{2} n^{2} }}{4}\delta_{{mm^{{\prime }} }} \delta_{{nn^{{\prime }} }} .$$
(A.18)

Similarly, for n = 0,

$$I = \frac{{\pi^{2} m^{2} }}{4}\delta_{{mm^{{\prime }} }} \delta_{{nn^{{\prime }} }} ,$$
(A.19)

where m and n are in the original basis in the last two equations.

It can easily be seen that I = 0 when m = 0 and n = 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aftab, M., Burge, J.H., Smith, G.A. et al. Modal Data Processing for High Resolution Deflectometry. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 255–270 (2019). https://doi.org/10.1007/s40684-019-00047-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00047-y

Keywords

Navigation