Skip to main content

Advertisement

Log in

Interactions Between Land-Use Change and Climate-Carbon Cycle Feedbacks

  • Carbon Cycle and Climate (K Zickfeld, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Interactions between land-use change and climate-carbon cycle feedbacks include biological processes, such as CO2-enhanced productivity of lands managed for food, energy, or wood; an increased terrestrial carbon sink as a consequence of an expanded area of secondary forests; and the effects of land cover on biophysical properties affecting climate (e.g., albedo, roughness, evapotranspiration). Interactions also result at a conceptual level because of the methods used to evaluate terrestrial terms in the global carbon budget. For example, net carbon emissions from land-use change help define the airborne fraction, as well as the magnitude of the residual terrestrial carbon sink. And the lost additional sink capacity (LASC) determined with dynamic global vegetation models (DGVMs) reveals an indirect long-term consequence of land-use change: the loss of a carbon sink as a result of converting forests to open lands. Three different terrestrial carbon fluxes are important for understanding perturbations to the global carbon cycle: the net annual emissions from land-use change, the residual terrestrial carbon sink, and the LASC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, et al. Carbon emissions from land use and land-cover change. Biogeosciences. 2012;9:5125–42. https://doi.org/10.5194/bg-9-5125-2012.

    Article  CAS  Google Scholar 

  2. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013.

    Google Scholar 

  3. Davidson EA, Ackerman IL. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry. 1993;20:161–93.

    Article  CAS  Google Scholar 

  4. Post WM, Kwon KC. Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol. 2000;6:317–27.

    Article  Google Scholar 

  5. Guo LB, Gifford RM. Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol. 2002;8:345–60.

    Article  Google Scholar 

  6. Murty D, Kirschbaum MF, McMurtrie RE, McGilvray H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol. 2002;8:105–23.

    Article  Google Scholar 

  7. Don A, Schumacher J, Freibauer A. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol. 2011;17(4):1658–70.

    Article  Google Scholar 

  8. Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci. 2017;114:9575–80.

    Article  CAS  Google Scholar 

  9. Houghton RA. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manag. 2013;4:539–46.

    Article  CAS  Google Scholar 

  10. Hansis E, Davis SJ, Pongratz J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob Biogeochem Cycles. 2015;29:1230–46. https://doi.org/10.1002/2014GB004997.

    Article  CAS  Google Scholar 

  11. Houghton RA, Nassikas AA. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles. 2017a;31:456–72. https://doi.org/10.1002/2016GB005546.

    Article  CAS  Google Scholar 

  12. Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray-Tortarolo G, Ahlström A, et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences. 2015;12:653–79.

    Article  CAS  Google Scholar 

  13. Gasser T, Ciais P. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of “emissions from land-use change”. Earth Syst Dynam. 2013;4:171–86. https://doi.org/10.5194/esd-4-171-2013.

    Article  Google Scholar 

  14. Pongratz J, Reick CH, Houghton RA, House JI. Terminology as a key uncertainty in net land use and land cover change carbon flux estimates. Earth Syst Dynam. 2014;5:177–95.

    Article  Google Scholar 

  15. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, et al. Global carbon budget 2016. Earth Syst Sci Data. 2016;8:605–49. https://doi.org/10.5194/essd-8-605-2016.

    Article  Google Scholar 

  16. Pongratz J, Reick CH, Raddatz T, Claussen M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob Biogeochem Cycles. 2009;23:GB4001. https://doi.org/10.1029/2009GB003488.

    Article  CAS  Google Scholar 

  17. Kaplan JO, Krumhardt KM, Zimmermann N. The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev. 2009;28:3016–34.

    Article  Google Scholar 

  18. DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob Biogeochem Cycles. 1999;13:803–15.

    Article  CAS  Google Scholar 

  19. Houghton RA. Historic changes in terrestrial carbon storage. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, editors. Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle. Dordrecht: Springer; 2012. p. 59–82. https://doi.org/10.1007/978-94-007-4159-1_4.

    Chapter  Google Scholar 

  20. Strassman KM, Joos F, Fischer G. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus. 2008;60B:583–603.

    Article  CAS  Google Scholar 

  21. Olofssson J, Hickler T. Effects of human land use on the global carbon cycle during the last 6,000 years. Veg Hist Archeobotany. 2008;17:605–15. https://doi.org/10.1007/s00334-007-0126-6.

    Article  Google Scholar 

  22. Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JP, et al. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob Biogeochem Cycles. 2009;23(2)

  23. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences. 2010;7(5):1505–14.

    Article  CAS  Google Scholar 

  24. Randerson JT, Van der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS. Global Fire Emissions Database, Version 4 (GFEDv4). Oak Ridge: ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1293.

  25. Erb K-H, Kastner T, Luyssaert S, Houghton RA, Kuemmerle T, Olofsson P, et al. Bias in the attribution of forest carbon sinks. Nat Clim Chang. 2013;3:854–6.

    Article  CAS  Google Scholar 

  26. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–93.

    Article  CAS  Google Scholar 

  27. FAO (2015) Forest Resources Assessment. 2015. http://www.fao.org/forest-resources-assessment/current-assessment/en/

  28. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–3.

    Article  CAS  Google Scholar 

  29. Kim DH, Sexton JO, Noojipady P, Huang C, Anand A, Channan S, et al. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens Environ. 2014;155:178–93.

    Article  Google Scholar 

  30. Aragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB, Wagner FH, et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun. 2018;9(1):536.

    Article  CAS  Google Scholar 

  31. Houghton RA, Nassikas AA. Negative emissions from stopping deforestation and forest degradation, globally. Glob Chang Biol. 2018;24(1):350–359.

  32. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim. 2006;19(14):3337–53.

    Article  Google Scholar 

  33. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim. 2014;27(2):511–26. https://doi.org/10.1175/JCLI-D-12-00579.1.

    Article  Google Scholar 

  34. Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, et al. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytol. 2018;217:507–22.

    Article  CAS  Google Scholar 

  35. Keenan TF, Prentice IC, Canadell JG, Williams CA, Wang H, Raupach M, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun. 2016;7:13428. https://doi.org/10.1038/ncomms13428.

    Article  CAS  Google Scholar 

  36. Goetz SJ, Mack MC, Gurney KR, Randerson JT, Houghton RA. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America. Environ Res Lett. 2007;2(4):045031.

    Article  Google Scholar 

  37. Goetz SJ, Epstein HE, Bhatt SS, Jia GJ, Kaplan JO, Lischke H, et al. Recent changes in Arctic vegetation: satellite observations and simulation model predictions. In: Gutman G, Reissell A, editors. Arctic Land Cover and Land Use in a Changing Climate. Amsterdam: Springer-Verlag; 2011. p. 9–36.

    Google Scholar 

  38. Berner LT, Beck PSA, Bunn AG, Lloyd AH, Goetz SJ. High-latitude tree growth and satellite vegetation indices: Correlations and trends in Russia and Canada (1982–2008). J Geophys Res Biogeosci. 2011;116(G1):G01015.

    Article  Google Scholar 

  39. Liu J, Bowman KW, Schimel DS, Parazoo NC, Jiang Z, Lee M, et al. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science. 2017;358:191.

    CAS  Google Scholar 

  40. Arp WJ. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 1991;14(8):869–75.

    Article  CAS  Google Scholar 

  41. Stitt M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 1991;14(8):741–62. https://doi.org/10.1111/j.1365-3040.1991.tb01440.x.

    Article  CAS  Google Scholar 

  42. Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, et al. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 2013;197(4):1077–94. https://doi.org/10.1111/nph.12104.

    Article  CAS  Google Scholar 

  43. Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J Clim. 2013;26(15):5289–314. https://doi.org/10.1175/JCLI-D-12-00494.1.

    Article  Google Scholar 

  44. De Kauwe MG, et al. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 2014;203(3):883–99. https://doi.org/10.1111/nph.12847.

    Article  CAS  Google Scholar 

  45. Zaehle S, Medlyn BE, de Kauwe MG, Walker AP, Dietze MC, Hickler T, et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol. 2014a;202(3):803–22. https://doi.org/10.1111/nph.12697.

    Article  CAS  Google Scholar 

  46. Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, et al. Predicting long-term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Glob Biogeochem Cycles. 2015;29(4):476–49.

    Article  CAS  Google Scholar 

  47. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núnez PV, Vásquez RM, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science. 1998;282:439–42.

    Article  CAS  Google Scholar 

  48. Phillips OL, Brienen RJW, RAINFOR collaboration. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 2017;12:1. https://doi.org/10.1186/s13021-016-0069-2.

    Article  Google Scholar 

  49. Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, et al. Long-term decline of the amazon carbon sink. Nature. 2015;519:344–8.

    Article  CAS  Google Scholar 

  50. Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo L, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457:1003–6.

    Article  CAS  Google Scholar 

  51. Qie L, Lewis SL, Sullivan MJP, Lopez-Gonzalez G, Pickavance GC, Sunderland T, et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat Commun. 2017;8:1966. https://doi.org/10.1038/s41467-017-01997-0.

    Article  CAS  Google Scholar 

  52. Lewis SL, Edwards DP, Galbraith D. Increasing human dominance of tropical forests. Science. 2015;349:827–32.

    Article  CAS  Google Scholar 

  53. Schimel D, Stephens BB, Fisher JB. Effect of increasing CO2 on the terrestrial carbon cycle. Proc Nat Acad Sci. 2015;112:436–41.

    Article  CAS  Google Scholar 

  54. Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci. 2016;12:201610156.

    Google Scholar 

  55. Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, et al. Rate of tree carbon accumulation increases continuously with tree size. Nature. 2014;507:90–3.

    Article  CAS  Google Scholar 

  56. Köhl M, Neupane PR, Lotfiomran N. The impact of tree age on biomass growth and carbon accumulation capacity: a retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One. 2017;12:e0181187. https://doi.org/10.1371/journal.pone.0181187.

    Article  CAS  Google Scholar 

  57. Klein T, Bader MK-F, Leuzinger S, Mildner M, Schleppi P, Siegwolf RTW, et al. Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J Ecol. 2016;104:1720–33.

    Article  CAS  Google Scholar 

  58. Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, et al. Old-growth forests as global carbon sinks. Nature. 2008;455:213–5.

    Article  CAS  Google Scholar 

  59. Heskel MA, O’Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc Natl Acad Sci. 2016;113:3832–7.

    Article  CAS  Google Scholar 

  60. Adachi M, Ito A, Yonemura S, Takeuchi W. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. J Environ Manag. 2017;200:97–104.

    Article  Google Scholar 

  61. Smith WK, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR, et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Chang. 2016;6:306–10. https://doi.org/10.1038/nclimate2879.

    Article  CAS  Google Scholar 

  62. de Kauwe MG, Keenan TF, Medlyn BE, Prentice IC, Terrer C. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat Clim Chang. 2016;6:892–3.

    Article  Google Scholar 

  63. Huntzinger DN, Michalak AM, Schwalm C, Ciais P, King AW, Fang Y, et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon climate feedback predictions. Sci Rep. 2017;7:4765. https://doi.org/10.1038/s41598-017-03818-2.

    Article  CAS  Google Scholar 

  64. McGuire AD, Koven C, Lawrence DM, Clein JS, Xia J, Beer C, et al. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Glob Biogeochem Cycles. 2016;30:1015–37.

    Article  CAS  Google Scholar 

  65. Keeling CD. The carbon dioxide cycle: reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants. In: Rasool SI, editor. Chemistry of the lower atmosphere. New York: Plenum Press; 1973.

    Google Scholar 

  66. Keeling RF, Graven HD, Welp LR, Resplandy L, Bi J, Piper SC, et al. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc Natl Acad Sci. 2017;114:10361–6.

    Article  CAS  Google Scholar 

  67. Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science. 2013;341:1085–9.

    Article  CAS  Google Scholar 

  68. Wenzel S, Cox PM, Eyring V, Friedlingstein P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature. 2016;538:499–501. https://doi.org/10.1038/nature19772.

    Article  CAS  Google Scholar 

  69. Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S, Ahlström A, et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature. 2017;541:516–20. https://doi.org/10.1038/nature20780.

    Article  CAS  Google Scholar 

  70. Zhang Y, Xiao X, Guanter L, Zhou S, Ciais P, Joiner J, et al. Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Sci Rep. 2016;6:39748.

    Article  CAS  Google Scholar 

  71. Ballantyne A, Smith W, Anderegg W, Kauppi P, Sarmiento J, Tans P, et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat Clim Chang. 2017;7:148–52. https://doi.org/10.1038/nclimate3204.

    Article  CAS  Google Scholar 

  72. Keenan TF, Prentice IC, Canadell JG, Williams CA, Han W, Raupach M, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun. 2017;7:13428. https://doi.org/10.1038/ncomms13428.

    Article  CAS  Google Scholar 

  73. Piao S, Liu Z, Huang M, Wang X, Ciais P, Canadell JG, et al. Lower land use emissions increased net land carbon sink during warming hiatus period. Nat Geosci. in press.

  74. Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D. The 2010 Amazon drought. Science. 2011;331:554.

    Article  CAS  Google Scholar 

  75. Coe MT, Brando PM, Deegan LA, Macedo MN, Neill C, Silvério DV. The forests of the Amazon and Cerrado moderate regional climate and are the key to the future. Trop Conserv Sci. 2017;10:1–6. https://doi.org/10.1177/1940082917720671journals.sagepub.com/home/trc.

    Article  Google Scholar 

  76. Berbert MLC, Costa MH. Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change. J Clim. 2003;16:2099–104.

    Article  Google Scholar 

  77. Butt N, de Oliveira PA, Costa MH. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J Geophys Res-Atmos. 2011;116:D11120.

    Article  Google Scholar 

  78. Knox R, Bisht G, Wang JF, Bras R. Precipitation variability over the forest-to-nonforest transition in southwestern Amazonia. J Clim. 2011;24:2368–77.

    Article  Google Scholar 

  79. Bonan G, DeFries R, Coe M, Ojima D. Land use and climate. In: Gutman G, editor. Land change science. Netherleands: Kluwer Academic Publishers; 2004. p. 301–14.

    Google Scholar 

  80. Coe MT, Costa MH, Soares-Filho BS. The influence of historical and potential future deforestation on the stream flow of the Amazon River—land surface processes and atmospheric feedbacks. J Hydrol. 2009;369:165–74.

    Article  Google Scholar 

  81. Coe MT, Marthews TR, Costa MH, Galbraith DR, Greenglass NL, Imbuzeiro HM, et al. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos Trans R Soc B Biol Sci. 2013;368:20120155.

    Article  Google Scholar 

  82. Costa MH, Pires GF. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int J Climatol. 2010;30:1970–9.

    Article  Google Scholar 

  83. Oliveira LJC, Costa MH, Soares-Filho BS, Coe MT. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ Res Lett. 2013;8:024021.

    Article  Google Scholar 

  84. Pires GF, Costa MH. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys Res Lett. 2013;40:3618–23.

    Article  Google Scholar 

  85. Spracklen DV, Garcia-Carreras L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys Res Lett. 2015;42:9546–52.

    Article  Google Scholar 

  86. Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. Larger trees suffer most during drought in forests worldwide. Nat Plants. 2015;1:15139.

    Article  Google Scholar 

  87. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259:660–84.

    Article  Google Scholar 

  88. McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol 2018. https://doi.org/10.1111/nph.15027

  89. Berdanier AB, Clark JS. Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests. Ecol Appl. 2016;26:17–23.

    Article  Google Scholar 

  90. Vanoni M, Bugmann H, Nötzli M, Bigler C. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. For Ecol Manag. 2016;382:51–63.

    Article  Google Scholar 

  91. Schwalm CR, Anderegg WRL, Michalak AM, Fisher JB, Biondi F, Koch G, et al. Global patterns of drought recovery. Nature. 2017;548:202–5.

    Article  CAS  Google Scholar 

  92. Davies-Barnard T, Valdes PJ, Singarayer JS, Wiltshire AJ, Jones CD. Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways. Glob Biogeochem Cycles. 2015;29:842–53. https://doi.org/10.1002/2014GB004949.

    Article  CAS  Google Scholar 

  93. Schneck R, Reick CH, Pongratz J, Gayler V. The mutual importance of anthropogenically and climate-induced changes in global vegetation cover for future land carbon emissions in the MPI-ESM CMIP5 simulations. Glob Biogeochem Cycles. 2015;29:1816–29. https://doi.org/10.1002/2014GB004959.

    Article  CAS  Google Scholar 

  94. Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8. https://doi.org/10.1038/nature20150.

    Article  CAS  Google Scholar 

  95. Hursh A, Ballantyne A, Cooper L, Maneta M, Kimball J, Watts J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob Chang Biol. 2017;23:2090–103.

    Article  Google Scholar 

  96. van Groenigen KJ, Osenberg CW, Terrer C, Carrilio Y, Dijkstra F, Heather J, et al. Faster turnover of new soil carbon inputs under increased atmospheric CO2. Glob Chang Biol 2017.

  97. Schuur EA, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, et al. Climate change and the permafrost carbon feedback. Nature. 2015;520:171–9.

    Article  CAS  Google Scholar 

  98. Koven CD, Lawrence DM, Riley WJ. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc Natl Acad Sci U S A. 2015;112:3752–7. https://doi.org/10.1073/pnas.1415123112.

    Article  CAS  Google Scholar 

  99. Abbott BW, Jones JB, Schuur EAG, Chapin FSC, Bowden WB, Bret-Harte MS, et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ Res Lett. 2016;11:034014. https://doi.org/10.1088/1748-9326/11/3/034014.

    Article  Google Scholar 

  100. Hayes DJ, Kicklighter DW, McGuire AD, Chen M, Zhuang Q, Yuan F, et al. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange. Environ Res Lett. 2014;9:045005. https://doi.org/10.1088/1748-9326/9/4/045005.

    Article  CAS  Google Scholar 

  101. Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, et al. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob Chang Biol. 2017;23:3646–66. https://doi.org/10.1111/gcb.13661.

    Article  Google Scholar 

  102. Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ Res Lett. 2015;10:094011. https://doi.org/10.1088/1748-9326/10/9/094011.

    Article  CAS  Google Scholar 

  103. Schuur E, McGuire AD, Johnstone J, Mack M, Rupp S, Euskirchen E, et al. Identifying indicators of state change and forecasting future vulnerability in Alaskan boreal ecosystems. University of Florida Gainsville United States. [online] Available from: http://www.dtic.mil/docs/citations/AD1028833. (2016). Accessed 29 Sept 2017.

  104. Thornton PE, Calvin K, Jones AD, Di Vittorio AV, Bond-Lamberty B, Chini L, et al. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nat Clim Chang. 2017;7:496–500. https://doi.org/10.1038/nclimate3310.

    Article  CAS  Google Scholar 

  105. Gitz V, Ciais P. Amplifying effects of land-use change on future atmospheric CO2 levels. Glob Biogeochem Cycles. 2003;17:1024–39.

    Article  CAS  Google Scholar 

  106. Strassmann KM, Joos F, Fischer G. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B. 2008;60:583–603.

    Article  CAS  Google Scholar 

  107. Stocker BD, Joos F. Quantifying differences in land use emission estimates implied by definition discrepancies. Earth Syst Dynam. 2015;6:731–44.

    Article  Google Scholar 

  108. Mahowald NM, Randerson JT, Lindsay K, Munoz E, Doney SC, Lawrence P, et al. Interactions between land use change and carbon cycle feedbacks. Glob Biogeochem Cycles. 2017;31:96–113.

    Article  CAS  Google Scholar 

  109. Houghton RA. Keeping management effects separate from environmental effects in terrestrial carbon accounting. Glob Chang Biol. 2013;19:2609–12.

    Article  Google Scholar 

  110. Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, et al. A human-driven decline in global burned area. Science. 2017;356:1356–62.

    Article  CAS  Google Scholar 

  111. Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature. 2012;488:70–2.

    Article  CAS  Google Scholar 

  112. Raupach MR, Gloor M, Sarmiento JL, Canadell JG, Frölicher TL, Gasser T, et al. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences. 2014;11:3453–75. https://doi.org/10.5194/bg-11-3453-2014.

    Article  CAS  Google Scholar 

  113. van Marle MJE, van Wees D, Houghton RA, Nassikas AA, van der Werf GR. Increasing efficiency of CO2 uptake by combined land-ocean sink. Abstract at American Geophyical Union Fall Meeting, Dec. 2017.

  114. Houghton RA. How well do we know the flux of CO2 from land-use change? Tellus B. 2010;62:337–51. https://doi.org/10.1111/j.1600-0889.2010.00473.x.

    Article  CAS  Google Scholar 

  115. van Marle MJE, Field RD, van der Werf GR, Estrada de Wagt IA, Houghton RA, Rizzo LV, et al. Fire and deforestation dynamics in Amazonia (1973–2014). Glob Biogeochem Cycles. 2017;31:24–38. https://doi.org/10.1002/2016GB005445.

    Article  CAS  Google Scholar 

  116. Knorr W. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophys Res Lett. 2009;36:L21710. https://doi.org/10.1029/2009GL040613.

    Article  CAS  Google Scholar 

  117. Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton RA. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science. 2017;358:230–4. https://doi.org/10.1126/science.aam5962.

    Article  CAS  Google Scholar 

  118. Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Chang. 2012;2:182–5. https://doi.org/10.1038/nclimate1354.

    Article  CAS  Google Scholar 

  119. Bellassen V, Luyssaert S. Carbon sequestration: managing forests in uncertain times. Nature. 2014;506:153–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Houghton.

Ethics declarations

Conflict of Interest

The corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Carbon Cycle and Climate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houghton, R.A. Interactions Between Land-Use Change and Climate-Carbon Cycle Feedbacks. Curr Clim Change Rep 4, 115–127 (2018). https://doi.org/10.1007/s40641-018-0099-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-018-0099-9

Keywords

Navigation