Skip to main content

Advertisement

Log in

The lung endothelin system: a potent therapeutic target with bosentan for the amelioration of lung alterations in a rat model of diabetes mellitus

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to show the effect of a new mechanism on endothelin (ET) receptors in the physiopathology of diabetes-related pulmonary injury. We tested the hypothesis that dual ET-1 receptor antagonism via bosentan can reverse diabetes-induced lung injury.

Methods

The rats (24 male) were separated into four groups: group 1 (HEALTHY): Control group; group 2 (DM): Streptozotocin 60 mg/kg (i.p.); group 3 (DM + BOS-1): Diabetes + bosentan 50 mg/kg per-os; group 4 (DM + BOS-2): Diabetes + bosentan 100 mg/kg per-os. The bosentan treatment was initiated immediately after the onset of STZ-induced diabetes and continued for 6 weeks.

Results

In the treatment group, SOD activity was significantly increased, although GSH and MDA levels and TNF-α and TGF-β gene expression were decreased. Bosentan 50 mg/kg and bosentan 100 mg/kg showed a significantly down-regulatory effect on ET-1, ET-A, and ET-B mRNA expression.

Conclusions

In conclusion, increased endothelin levels in the lung associated with diabetes may be one cause of endothelial dysfunction, cytokine increase, and oxidant/antioxidant imbalance in the pathogenesis of complications that may develop during diabetes. With its multiple effects, bosentan therapy may be an effective option against complications that may develop in association with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karalliedde J, Gnudi L (2014) Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc. doi:10.1093/ndt/gfu405

    Google Scholar 

  2. Dave S (2014) Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: a new approach to treat type 1 diabetes. Adv Biomed Res 3:266. doi:10.4103/2277-9175.148247

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rosenbloom AL, Silverstein JH, Amemiya S, Zeitler P, Klingensmith G (2009) Type 2 diabetes in the child and adolescent. Pediatr Diabetes 10(Suppl 12):17–32. doi:10.1111/j.1399-448.2009.00584.x

    Article  PubMed  Google Scholar 

  4. Simsek DG, Aycan Z, Ozen S, Cetinkaya S, Kara C, Abali S, Demir K, Tunc O, Ucakturk A, Asar G, Bas F, Cetinkaya E, Aydin M, Karaguzel G, Orbak Z, Siklar Z, Altincik A, Okten A, Ozkan B, Ocal G, Semiz S, Arslanoglu I, Evliyaoglu O, Bundak R, Darcan S (2013) Diabetes care, glycemic control, complications, and concomitant autoimmune diseases in children with type 1 diabetes in Turkey: a multicenter study. J Clin Res Pediatr Endocrinol 5(1):20–26. doi:10.4274/Jcrpe.893

    Article  PubMed Central  PubMed  Google Scholar 

  5. Demirel F, Tepe D, Kara O, Esen I (2013) Microvascular complications in adolescents with type 1 diabetes mellitus. J Clin Res Pediatr Endocrinol 5(3):145–149. doi:10.4274/Jcrpe.994

    Article  PubMed Central  PubMed  Google Scholar 

  6. Genuth S, Eastman R, Kahn R, Klein R, Lachin J, Lebovitz H, Nathan D, Vinicor F (2003) Implications of the United kingdom prospective diabetes study. Diabetes Care 26(Suppl 1):S28–S32

    PubMed  Google Scholar 

  7. Gilbert RE (2013) Endothelial loss and repair in the vascular complications of diabetes: pathogenetic mechanisms and therapeutic implications. Circ J 77(4):849–856

    Article  CAS  PubMed  Google Scholar 

  8. Genuth S (2006) Insights from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study on the use of intensive glycemic treatment to reduce the risk of complications of type 1 diabetes. Endocr Pract 12(Suppl 1):34–41. doi:10.4158/EP.12.S1.34

    Article  PubMed  Google Scholar 

  9. Kilpatrick ES, Rigby AS, Atkin SL (2009) Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care 32(10):1901–1903. doi:10.2337/dc09-0109

    Article  PubMed Central  PubMed  Google Scholar 

  10. Popov D, Simionescu M (2001) Structural and transport property alterations of the lung capillary endothelium in diabetes. Ital J Anat Embryol 106(2 Suppl 1):405–412

    CAS  PubMed  Google Scholar 

  11. Vojtkova J, Ciljakova M, Michnova Z, Turcan T (2012) Chronic complications of diabetes mellitus related to the respiratory system. Pediatr Endocrinol Diabetes Metab 18(3):112–115

    PubMed  Google Scholar 

  12. Weynand B, Jonckheere A, Frans A, Rahier J (1999) Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration 66(1):14–19. doi:10.1159/000029331

    Article  CAS  PubMed  Google Scholar 

  13. Hsia CC, Raskin P (2007) Lung function changes related to diabetes mellitus. Diabetes Technol Ther 9(Suppl 1):S73–S82. doi:10.1089/dia.2007.0227

    PubMed  Google Scholar 

  14. Kuziemski K, Specjalski K, Jassem E (2011) Diabetic pulmonary microangiopathy—fact or fiction? Endokrynol Pol 62(2):171–176

    PubMed  Google Scholar 

  15. Pitocco D, Fuso L, Conte EG, Zaccardi F, Condoluci C, Scavone G, Incalzi RA, Ghirlanda G (2012) The diabetic lung–a new target organ? Rev Diabet Stud 9(1):23–35. doi:10.1900/RDS.2012.9.23

    Article  PubMed Central  PubMed  Google Scholar 

  16. Scano G, Filippelli M, Romagnoli I, Mancini M, Misuri G, Duranti R, Rosi E (2000) Hypoxic and hypercapnic breathlessness in patients with type I diabetes mellitus. Chest 117(4):960–967

    Article  CAS  PubMed  Google Scholar 

  17. Galie N, Beghetti M, Gatzoulis MA, Granton J, Berger RMF, Lauer A, Chiossi E, Landzberg M, Invest B (2006) Bosentan therapy in patients with Eisenmenger syndrome—a multicenter, double-blind, randomized, placebo-controlled study. Circulation 114(1):48–54. doi:10.1161/Circulationaha.106.630715

    Article  CAS  PubMed  Google Scholar 

  18. Sitbon O, Gressin V, Speich R, Macdonald PS, Opravil M, Cooper DA, Fourme T, Humbert M, Delfraissy JF, Simonneau G (2004) Bosentan for the treatment of human immunodeficiency virus-associated pulmonary arterial hypertension. Am J Respir Crit Care Med 170(11):1212–1217. doi:10.1164/rccm.200404-445OC

    Article  PubMed  Google Scholar 

  19. Hoeper MM, Halank M, Marx C, Hoeffken G, Seyfarth HJ, Schauer J, Niedermeyer J, Winkler J (2005) Bosentan therapy for portopulmonary hypertension. Eur Respir J 25(3):502–508. doi:10.1183/09031936.05.00080804

    Article  CAS  PubMed  Google Scholar 

  20. Rafnsson A, Bohm F, Settergren M, Gonon A, Brismar K, Pernow J (2012) The endothelin receptor antagonist bosentan improves peripheral endothelial function in patients with type 2 diabetes mellitus and microalbuminuria: a randomised trial. Diabetologia 55(3):600–607. doi:10.1007/s00125-011-2415-y

    Article  CAS  PubMed  Google Scholar 

  21. Hauber HP, Blaukovitsch M (2010) Current and future treatment options in idiopathic pulmonary fibrosis. Inflamm Allergy Drug Targets 9(3):158–172

    Article  CAS  PubMed  Google Scholar 

  22. Cosentino F, Luscher TF (1998) Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol 32(Suppl 3):S54–S61

    CAS  PubMed  Google Scholar 

  23. Eleftheriadis T, Antoniadi G, Pissas G, Liakopoulos V, Stefanidis I (2013) The renal endothelium in diabetic nephropathy. Ren Fail 35(4):592–599. doi:10.3109/0886022X.2013.773836

    Article  CAS  PubMed  Google Scholar 

  24. Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJ, Stehouwer CD, Smulders YM, van Hinsbergh VW (2013) Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord 14(1):39–48. doi:10.1007/s11154-013-9239-7

    Article  PubMed  Google Scholar 

  25. Feener EP, King GL (2001) Endothelial dysfunction in diabetes mellitus: role in cardiovascular disease. Heart Fail Monit 1(3):74–82

    CAS  PubMed  Google Scholar 

  26. Lee SH, Channick RN (2005) Endothelin antagonism in pulmonary arterial hypertension. Semin Respir Crit Care Med 26(4):402–408. doi:10.1055/s-2005-916155

    Article  PubMed  Google Scholar 

  27. Shao D, Park JE, Wort SJ (2011) The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 63(6):504–511. doi:10.1016/j.phrs.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  28. Arison RN, Ciaccio EI, Glitzer MS, Cassaro JA, Pruss MP (1967) Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes 16(1):51–56

    Article  CAS  PubMed  Google Scholar 

  29. Hasanein P, Shahidi S (2010) Effects of combined treatment with vitamins C and E on passive avoidance learning and memory in diabetic rats. Neurobiol Learn Mem 93(4):472–478. doi:10.1016/j.nlm.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  30. de Souza LF, Barreto F, da Silva EG, Andrades ME, Guimaraes EL, Behr GA, Moreira JC, Bernard EA (2007) Regulation of LPS stimulated ROS production in peritoneal macrophages from alloxan-induced diabetic rats: involvement of high glucose and PPARgamma. Life Sci 81(2):153–159. doi:10.1016/j.lfs.2007.04.035

    Article  PubMed  Google Scholar 

  31. Ghorbani A, Omrani GR, Hadjzadeh MA, Varedi M (2013) Proinsulin C-peptide inhibits lipolysis in diabetic rat adipose tissue through phosphodiestrase-3B enzyme. Horm Metab Res 45(3):221–225. doi:10.1055/s-0032-1323764

    CAS  PubMed  Google Scholar 

  32. Ghorbani A, Varedi M, Hadjzadeh MA, Omrani GH (2010) Type-1 diabetes induces depot-specific alterations in adipocyte diameter and mass of adipose tissues in the rat. Exp Clin Endocrinol Diabetes 118(7):442–448. doi:10.1055/s-0030-1247566

    Article  CAS  PubMed  Google Scholar 

  33. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  34. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25(1):192–205

    Article  CAS  PubMed  Google Scholar 

  35. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    CAS  PubMed  Google Scholar 

  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  37. Guerci B, Bohme P, Kearney-Schwartz A, Zannad F, Drouin P (2001) Endothelial dysfunction and type 2 diabetes. Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab 27(4 Pt 1):436–447

    CAS  PubMed  Google Scholar 

  38. Sarman B, Toth M, Somogyi A (1998) Role of endothelin-1 in diabetes mellitus. Diabetes Metab Rev 14(2):171–175

    Article  CAS  PubMed  Google Scholar 

  39. Ergul A (2011) Endothelin-1 and diabetic complications: focus on the vasculature. Pharmacol Res 63(6):477–482. doi:10.1016/j.phrs.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  40. Comellas AP, Briva A (2009) Role of endothelin-1 in acute lung injury. Transl Res 153(6):263–271. doi:10.1016/j.trsl.2009.02.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ross B, D’Orleans-Juste P, Giaid A (2010) Potential role of endothelin-1 in pulmonary fibrosis: from the bench to the clinic. Am J Respir Cell Mol Biol 42(1):16–20. doi:10.1165/rcmb.2009-0175TR

    Article  CAS  PubMed  Google Scholar 

  42. Schneider MP, Boesen EI, Pollock DM (2007) Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 47:731–759. doi:10.1146/annurev.pharmtox.47.120505.105134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cardillo C, Campia U, Bryant MB, Panza JA (2002) Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 106(14):1783–1787

    Article  CAS  PubMed  Google Scholar 

  44. McAuley DF, Nugent AG, McGurk C, Maguire S, Hayes JR, Johnston GD (2000) Vasoconstriction to endogenous endothelin-1 is impaired in patients with Type II diabetes mellitus. Clin Sci 99(3):175–179. doi:10.1042/Cs20000005

    Article  CAS  PubMed  Google Scholar 

  45. Zhou Y, Mitra S, Varadharaj S, Parinandi N, Zweier JL, Flavahan NA (2006) Increased expression of cyclooxygenase-2 mediates enhanced contraction to endothelin ETA receptor stimulation in endothelial nitric oxide synthase knockout mice. Circ Res 98(11):1439–1445. doi:10.1161/01.RES.0000224120.52792.10

    Article  CAS  PubMed  Google Scholar 

  46. Climent B, Fernandez N, Sanz E, Sanchez A, Monge L, Garcia-Villalon AL, Dieguez G (2005) Enhanced response of pig coronary arteries to endothelin-1 after ischemia-reperfusion. Role of endothelin receptors, nitric oxide and prostanoids. Eur J Pharmacol 524(1–3):102–110. doi:10.1016/j.ejphar.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  47. Fonseca C, Abraham D, Renzoni EA (2011) Endothelin in pulmonary fibrosis. Am J Respir Cell Mol Biol 44(1):1–10. doi:10.1165/rcmb.2009-0388TR

    Article  CAS  PubMed  Google Scholar 

  48. Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F, Rubin LJ (2001) Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 358(9288):1119–1123. doi:10.1016/S0140-6736(01)06250-X

    Article  CAS  PubMed  Google Scholar 

  49. Prakash A, Perry CM (2002) Bosentan. Am J Cardiovasc Drugs 2(5):335–343 (discussion 343)

    Article  CAS  PubMed  Google Scholar 

  50. Araz O, Demirci E, Yilmazel Ucar E, Calik M, Pulur D, Karaman A, Yayla M, Altun E, Halici Z, Akgun M (2013) Comparison of reducing effect on lung injury of dexamethasone and bosentan in acute lung injury: an experimental study. Multidiscip Respir Med 8(1):74. doi:10.1186/2049-6958-8-74

    Article  PubMed Central  PubMed  Google Scholar 

  51. Galie N, Rubin L, Hoeper M, Jansa P, Al-Hiti H, Meyer G, Chiossi E, Kusic-Pajic A, Simonneau G (2008) Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet 371(9630):2093–2100. doi:10.1016/S0140-6736(08)60919-8

    Article  CAS  PubMed  Google Scholar 

  52. Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30(1):49–59. doi:10.1111/j.1755-5922.2010.00218.x

    Article  CAS  PubMed  Google Scholar 

  53. Navarro-Gonzalez JF, Jarque A, Muros M, Mora C, Garcia J (2009) Tumor necrosis factor-alpha as a therapeutic target for diabetic nephropathy. Cytokine Growth Factor Rev 20(2):165–173. doi:10.1016/j.cytogfr.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  54. Nishimura M, Obayashi H, Mizuta I, Hara H, Adachi T, Ohta M, Tegoshi H, Fukui M, Hasegawa G, Shigeta H, Kitagawa Y, Nakano K, Kaji R, Nakamura N (2003) TNF, TNF receptor type 1, and allograft inflammatory factor-1 gene polymorphisms in Japanese patients with type 1 diabetes. Hum Immunol 64(2):302–309

    Article  CAS  PubMed  Google Scholar 

  55. Gonzalez-Clemente JM, Mauricio D, Richart C, Broch M, Caixas A, Megia A, Gimenez-Palop O, Simon I, Martinez-Riquelme A, Gimenez-Perez G, Vendrell J (2005) Diabetic neuropathy is associated with activation of the TNF-alpha system in subjects with type 1 diabetes mellitus. Clin Endocrinol 63(5):525–529. doi:10.1111/j.1365-2265.2005.02376.x

    Article  CAS  Google Scholar 

  56. Yoshida A, Yoshida S, Khalil AK, Ishibashi T, Inomata H (1998) Role of NF-kappa B-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci 39(7):1097–1106

    CAS  PubMed  Google Scholar 

  57. Gupta S, Gambhir JK, Kalra O, Gautam A, Shukla K, Mehndiratta M, Agarwal S, Shukla R (2013) Association of biomarkers of inflammation and oxidative stress with the risk of chronic kidney disease in Type 2 diabetes mellitus in North Indian population. J Diabetes Complications 27(6):548–552. doi:10.1016/j.jdiacomp.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  58. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, Takasu T, Imamura M, Li Q, Tomiyama H, Kobayashi Y, Noda A, Sasamata M, Shibasaki M (2013) Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol 715(1–3):246–255. doi:10.1016/j.ejphar.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  59. Bowen T, Jenkins RH, Fraser DJ (2013) MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol 229(2):274–285. doi:10.1002/path.4119

    Article  CAS  PubMed  Google Scholar 

  60. Samarakoon R, Overstreet JM, Higgins PJ (2013) TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 25(1):264–268. doi:10.1016/j.cellsig.2012.10.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Gao Y, Xu X, Ding K, Liang Y, Jiang D, Dai H (2013) Rapamycin inhibits transforming growth factor beta1-induced fibrogenesis in primary human lung fibroblasts. Yonsei Med J 54(2):437–444. doi:10.3349/ymj.2013.54.2.437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Song X, Liu W, Xie S, Wang M, Cao G, Mao C, Lv C (2013) All-trans retinoic acid ameliorates bleomycin-induced lung fibrosis by downregulating the TGF-beta1/Smad3 signaling pathway in rats. Lab Invest 93(11):1219–1231. doi:10.1038/labinvest.2013.108

    Article  CAS  PubMed  Google Scholar 

  63. El Gazaerly H, Elbardisey DM, Eltokhy HM, Teaama D (2013) Effect of transforming growth factor Beta 1 on wound healing in induced diabetic rats. Int J Health Sci (Qassim) 7(2):160–172

    Article  Google Scholar 

  64. Sipal S, Halici Z, Kiki I, Polat B, Albayrak A, Albayrak F, Karakus E, Aksak S, Ozturk B, Gundogdu C (2012) Comparative study of three angiotensin II type 1 receptor antagonists in preventing liver fibrosis in diabetic rats: stereology, histopathology, and electron microscopy. J Mol Histol 43(6):723–735. doi:10.1007/s10735-012-9441-z

    Article  CAS  PubMed  Google Scholar 

  65. Halici Z, Bilen H, Albayrak F, Uyanik A, Cetinkaya R, Suleyman H, Keles ON, Unal B (2009) Does telmisartan prevent hepatic fibrosis in rats with alloxan-induced diabetes? Eur J Pharmacol 614(1–3):146–152. doi:10.1016/j.ejphar.2009.04.042

    Article  CAS  PubMed  Google Scholar 

  66. Miric G, Dallemagne C, Endre Z, Margolin S, Taylor SM, Brown L (2001) Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol 133(5):687–694. doi:10.1038/sj.bjp.0704131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR, Francos B, Sharma S, Falkner B, McGowan TA, Donohue M, Ramachandrarao S, Xu R, Fervenza FC, Kopp JB (2011) Pirfenidone for diabetic nephropathy. J Am Soc Nephrol 22(6):1144–1151. doi:10.1681/ASN.2010101049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Shepler B, Nash C, Smith C, Dimarco A, Petty J, Szewciw S (2012) Update on potential drugs for the treatment of diabetic kidney disease. Clin Ther 34(6):1237–1246. doi:10.1016/j.clinthera.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  69. Obrosova IG (2005) Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Signal 7(11–12):1543–1552. doi:10.1089/ars.2005.7.1543

    Article  CAS  PubMed  Google Scholar 

  70. Vincent AM, Russell JW, Low P, Feldman EL (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25(4):612–628. doi:10.1210/Er.2003-0019

    Article  CAS  PubMed  Google Scholar 

  71. Ziegler D, Sohr CGH, Nourooz-Zadeh J (2004) Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 27(9):2178–2183. doi:10.2337/diacare.27.9.2178

    Article  CAS  PubMed  Google Scholar 

  72. Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7(4):257–264

    Article  CAS  PubMed  Google Scholar 

  73. Wen Y, Skidmore JC, Porter-Turner MM, Rea CA, Khokher MA, Singh BM (2002) Relationship of glycation, antioxidant status and oxidative stress to vascular endothelial damage in diabetes. Diabetes Obes Metab 4(5):305–308

    Article  CAS  PubMed  Google Scholar 

  74. Uyanik A, Unal D, Uyanik MH, Halici Z, Odabasoglu F, Altunkaynak ZB, Cadirci E, Keles M, Gundogdu C, Suleyman H, Bayir Y, Albayrak M, Unal B (2010) The effects of polymicrobial sepsis with diabetes mellitus on kidney tissues in ovariectomized rats. Ren Fail 32(5):592–602. doi:10.3109/08860221003759478

    Article  CAS  PubMed  Google Scholar 

  75. Suys B, de Beeck LO, Rooman R, Kransfeld S, Heuten H, Goovaerts I, Vrints C, de Wolf D, Matthys D, Manuel-y-Keenoy B (2007) Impact of oxidative stress on the endothelial dysfunction of children and adolescents with type 1 diabetes mellitus: protection by superoxide dismutase? Pediatr Res 62(4):456–461. doi:10.1203/PDR.0b013e318142581a

    Article  CAS  PubMed  Google Scholar 

  76. Goyal R, Singhai M, Faizy AF (2011) Glutathione peroxidase activity in obese and nonobese diabetic patients and role of hyperglycemia in oxidative stress. J Midlife Health 2(2):72–76. doi:10.4103/0976-7800.92529

    PubMed Central  PubMed  Google Scholar 

  77. Likidlilid A, Patchanans N, Poldee S, Peerapatdit T (2007) Glutathione and glutathione peroxidase in type 1 diabetic patients. J Med Assoc Thai 90(9):1759–1767

    PubMed  Google Scholar 

  78. Yayla M, Halici Z, Unal B, Bayir Y, Akpinar E, Gocer F (2014) Protective effect of Et-1 receptor antagonist bosentan on paracetamol induced acute liver toxicity in rats. Eur J Pharmacol 726C:87–95. doi:10.1016/j.ejphar.2014.01.022

    Article  Google Scholar 

  79. Halici Z, Bilen H, Albayrak F, Uyanik A, Cetinkaya R, Suleyman H, Keles ON, Unal B (2009) Does telmisartan prevent hepatic fibrosis in rats with alloxan-induced diabetes? Eur J Pharmacol 614(1–3):146–152. doi:10.1016/J.Ejphar.04.042

    Article  CAS  PubMed  Google Scholar 

  80. Albayrak A, Uyanik MH, Odabasoglu F, Halici Z, Uyanik A, Bayir Y, Albayrak F, Albayrak Y, Polat B, Suleyman H (2011) The effects of diabetes and/or polymicrobial sepsis on the status of antioxidant enzymes and pro-inflammatory cytokines on heart, liver, and lung of ovariectomized rats. J Surg Res 169(1):67–75. doi:10.1016/j.jss.2009.09.055

    Article  CAS  PubMed  Google Scholar 

  81. Nakhjavani M, Esteghamati A, Nowroozi S, Asgarani F, Rashidi A, Khalilzadeh O (2010) Type 2 diabetes mellitus duration: an independent predictor of serum malondialdehyde levels. Singapore Med J 51(7):582–585

    CAS  PubMed  Google Scholar 

  82. Reis JS, Veloso CA, Volpe CM, Fernandes JS, Borges EA, Isoni CA, Dos Anjos PM, Nogueira-Machado JA (2012) Soluble RAGE and malondialdehyde in type 1 diabetes patients without chronic complications during the course of the disease. Diab Vasc Dis Res 9(4):309–314. doi:10.1177/1479164111436316

    Article  PubMed  Google Scholar 

  83. Singh G, Sharma B, Jaggi AS, Singh N (2014) Efficacy of bosentan, a dual ETA and ETB endothelin receptor antagonist, in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats. Pharmacol Biochem Behav 124:27–35. doi:10.1016/j.pbb.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  84. Jiang JH, Yuen V, Xiang H, McNeill JH (2006) Improvement in cardiac function of diabetic rats by bosentan is not associated with changes in the activation of PKC isoforms. Mol Cell Biochem 282(1–2):177–185. doi:10.1007/S11010-006-1926-1

    Article  CAS  PubMed  Google Scholar 

  85. Sachidanandam K, Portik-Dobos V, Kelly-Cobbs AI, Ergul A (2010) Dual endothelin receptor antagonism prevents remodeling of resistance arteries in diabetes. Can J Physiol Pharm 88(6):616–621. doi:10.1139/Y10-034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Marc Iglarz and Actelion Pharmaceuticals Ltd., for providing us bosentan.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

Animal experiments and procedures were performed in accordance with the national guidelines for the use and care of laboratory animals and were approved by Ataturk University’s local animal care committee.

Informed consent

All authors consent journal’s entire rule and confirm the publication of manuscript in the Journal of Endocrinological Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cayir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cayir, A., Ugan, R.A., Albayrak, A. et al. The lung endothelin system: a potent therapeutic target with bosentan for the amelioration of lung alterations in a rat model of diabetes mellitus. J Endocrinol Invest 38, 987–998 (2015). https://doi.org/10.1007/s40618-015-0282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0282-y

Keywords

Navigation