Skip to main content
Log in

Jordan Types of Triangular Matrices over a Finite Field

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

Let \(\lambda \) be a partition of an integer n and \({\mathbb F}_q\) be a finite field of order q. Let \(P_\lambda (q)\) be the number of strictly upper triangular \(n\times n\) matrices of the Jordan type \(\lambda \). It is known that the polynomial \(P_\lambda \) has a tendency to be divisible by high powers of q and \(Q=q-1\), and we put \(P_\lambda (q)=q^{d(\lambda )}Q^{e(\lambda )}R_\lambda (q)\), where \(R_\lambda (0)\ne 0\) and \(R_\lambda (1)\ne 0\). In this article, we study the polynomials \(P_\lambda (q)\) and \(R_\lambda (q)\). Our main results: an explicit formula for \(d(\lambda )\) (an explicit formula for \(e(\lambda )\) is known, see Proposition 3.3 below), a recursive formula for \(R_\lambda (q)\) (a similar formula for \(P_\lambda (q)\) is known, see Proposition 3.1 below), the stabilization of \(R_\lambda \) with respect to extending \(\lambda \) by adding strings of 1’s, and an explicit formula for the limit series \(R_{\lambda 1^\infty }\). Our studies are motivated by projected applications to the orbit method in the representation theory of nilpotent algebraic groups over finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borodin, A.M.: Limit Jordan normal form of large triangular matrices over a finite field. Funct. Anal. Appl 29, 279–281 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borodin, A.M.: The law of large numbers and the Central Limit Theorem for the Jordan normal form of large triangular matrices over a finite field. J. Math. Sci. 96, 3455–3471 (1999)

    Article  MathSciNet  Google Scholar 

  3. Fulton, W., Harris, J.: Representation theory. The first course. In: Graduate texts in mathematics, vol. 129. Springer, Berlin (1991)

    Google Scholar 

  4. Kirillov, A.A.: Lectures on the orbit method. In: Graduate studies in mathematics, vol. 64. American Mathematical Society, Providence (2004)

    Google Scholar 

  5. Kirillov, A.A.: Topics in the modern representation theory. In: Lectures at higher school in economics. Springer, Berlin (2019)

    Google Scholar 

  6. Serre, J.-P.: Linear representations of finite groups. In: Graduate texts in mathematics, vol. 42. Springer, Berlin (1977)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewer for careful reading and useful remarks. We thank D. Golubenko for his help with a table for \(P_\lambda \).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Fuchs.

Additional information

To the memory of Louiza Kirillova (1937–2021).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Table for \(P_\lambda ,\, n(\lambda )\le 10\).

Appendix: Table for \(P_\lambda ,\, n(\lambda )\le 10\).

The table below is presented in two columns on the next page and in one column in subsequent pages. In every line, the first entry is the notation for the partition \(\lambda \), the second entry is the part \(q^{d(\lambda )}Q^{e(\lambda )}\) of the polynomial \(P_\lambda \) and the sequence in square brackets is the sequence of coefficients of the polynomial \(R(\lambda )\) (starting with the constant term. For example, the line

$$\begin{aligned} 31\ q^2Q^2\ [1,3] \end{aligned}$$

means \(P_{31}=q^2Q^2(1+3q)\), and the line

$$\begin{aligned} 51^3\ q^{15}Q^4\ [1,5,15,35] \end{aligned}$$

means \(P_{51^3}=q^{15}Q^4(1+5q+15q^2+35q^3).\)

$$\begin{aligned}&\begin{array} {lll} \mathbf{2}&{}Q&{}[1]\\ 1^2&{}1&{}[1]\\ \mathbf{3}&{}qQ^2&{}[1]\\ 21&{}Q&{}[1,2]\\ 1^3&{}1&{}[1]\\ \mathbf{4}&{}q^3Q^3&{}[1]\\ 31&{}q^2Q^2&{}[1,3]\\ 2^2&{}qQ^2&{}[1,2]\\ 21^2&{}Q&{}[1,2,3]\\ 1^4&{}1&{}[1]\\ \mathbf{5}&{}q^6Q^4&{}[1]\\ 41&{}q^5Q^3&{}[1,4]\\ 32&{}q^3Q^3&{}[1,4,5]\\ 31^2&{}q^3Q^2&{}[1,3,6]\\ 2^21&{}qQ^2&{}[1,3,6,5]\\ 21^3&{}Q&{}[1,2,3,4]\\ 1^5&{}1&{}[1]\\ \mathbf{6}&{}q^{10}Q^5&{}[1]\\ 51&{}q^9Q^4&{}[1,5]\\ 42&{}q^7Q^4&{}[1,5,9]\\ 41^2&{}q^7Q^3&{}[1,4,10]\\ 3^2&{}q^6Q^4&{}[1,4,5]\\ 321&{}q^4Q^3&{}[1,5,14,24,16]\\ 31^3&{}q^4Q^2&{}[1,3,6,10]\\ 2^3&{}q^3Q^3&{}[1,3,6,5]\\ 2^21^2&{}qQ^2&{}[1,3,7,12,13,9]\\ 21^4&{}Q&{}[1,2,3,4,5]\\ 1^6&{}1&{}[1]\\ \mathbf{7}&{}q^{15}Q^6&{}[1]\\ 61&{}q^{14}Q^5&{}[1,6]\\ 52&{}q^{12}Q^5&{}[1,6,14]\\ 51^2&{}q^{12}Q^4&{}[1,5,15]\\ 43&{}q^{10}Q^5&{}[1,6,14,14]\\ 421&{}q^9Q^4&{}[1,6,20,43,35]\\ 41^3&{}q^9Q^3&{}[1,4,10,20]\\ 3^21&{}q^8Q^4&{}[1,5,15,28,21]\\ 32^2&{}q^6Q^4&{}[1,5,15,28,35,21]\\ 321^2&{}q^5Q^3&{}[1,5,15,34,58,62,35]\\ 31^4&{}q^5Q^2&{}[1,3,6,10,15]\\ 2^31&{}q^3Q^3&{}[1,4,10,20,28,28,14]\\ 2^21^3&{}qQ^2&{}[1,3,7,13,21,24,22,14]\\ 21^5&{}Q&{}[1,2,3,4,5,6]\\ 1^7&{}1&{}[1]\\ \mathbf{8}&{}q^{21}Q^7&{}[1]\\ \end{array}\\&\begin{array} {lll} 71&{}q^{20}Q^6&{}[1,7]\\ 62&{}q^{18}Q^6&{}[1,7,20]\\ 61^2&{}q^{18}Q^5&{}[1,6,21]\\ 53&{}q^{16}Q^6&{}[1,7,20,28]\\ 521&{}q^{15}Q^5&{}[1,7,27,69,64]\\ 51^3&{}q^{15}Q^4&{}1,5,15,35]\\ 4^2&{}q^{15}Q^6&{}[1,6,14,14]\\ 431&{}q^{13}Q^5&{}[1,7,27,69,106,70]\\ 42^2&{}q^{12}Q^5&{}[1,6,21,48,78,56]\\ 421^2&{}q^{11}Q^4&{}[1,6,21,55,112,135,90]\\ 41^4&{}q^{11}Q^3&{}[1,4,10,20,35]\\ 3^22&{}q^{10}Q^5&{}1,6,21,48,78,84,42]\\ 3^21^2&{}q^{10}Q^4&{}[1,5,16,39,73,90,56]\\ 32^21&{}q^7Q^4&{}[1,6,21,55,112,183,218,174,70]\\ 321^3&{}q^6Q^3&{}[1,5,15,35,69,113,135,123,64]\\ 31^5&{}q^6Q^2&{}[1,3,6,10,15,21]\\ 2^4&{}q^6Q^4&{}1,4,10,20,28,28,14]\\ 2^31^2&{}q^3Q^3&{}[1,4,11,24,45,68,87,88,64,28]\\ 2^21^4&{}qQ^2&{}[1,3,7,13,22,33,39,39,33,20]\\ 21^6&{}Q&{}[1,2,3,4,5,6,7]\\ 1^8&{}1&{}[1]\\ \mathbf{9}&{}q^{28}Q^8&{}[1]\\ 81&{}q^{27}Q^7&{}[1,8]\\ 72&{}q^{25}Q^7&{}[1,8,27]\\ 71^2&{}q^{25}Q^6&{}[1,7,28]\\ 63&{}q^{23}Q^7&{}[1,8,27,48]\\ 621&{}q^{22}Q^6&{}[1,8,35,103,105]\\ 61^3&{}q^{22}Q^5&{}[1,6,21,56]\\ 54&{}q^{21}Q^7&{}[1,8,27,48,42]\\ 531&{}q^{20}Q^6&{}[1,8,35,103,195,162]\\ 52^2&{}q^{19}Q^6&{}[1,7,28,75,147,120]\\ 521^2&{}q^{18}Q^5&{}[1,7,28,83,194,254,189]\\ 51^4&{}q^{18}Q^4&{}[1,5,15,35,70]\\ 4^21&{}q^{19}Q^6&{}[1,7,28,75,120,84]\\ 432&{}q^{16}Q^6&{}[1,8,35,103,222,329,366,168]\\ 431^2&{}q^{16}Q^5&{}[1,7,28,83,194,344,387,216]\\ 42^21&{}q^{14}Q^5&{}[1,7,28,83,194,371,513,477,216]\\ 421^3&{}q^{13}Q^4&{}[1,6,21,56,125,237,312,313,189]\\ 41^5&{}q^{13}Q^3&{}[1,4,10,20,35,56]\\ 3^3&{}q^{15}Q^6&{}[1,6,21,48,78,84,42]\\ 3^221&{}q^{12}Q^5&{}[1,7,28,83,194,371,561,633,474,168]\\ 3^21^3&{}q^{12}Q^4&{}[1,5,16,40,85,152,208,213,120]\\ 32^3&{}q^{10}Q^5&{}[1,6,21,56,117,198,273,288,216,84]\\ 32^21^2&{}q^8Q^4&{}[1,6,22,61,141,277,472,672,793,720,453,162]\\ \end{array}\\ \end{aligned}$$
$$\begin{aligned}&\begin{array} {lll} 321^4&{}q^7Q^3&{}[1,5,15,35,70,125,196,243,253,212,105]\\ 31^6&{}q^7Q^2&{}[1,3,6,10,15,21,28]\\ 2^41&{}q^6Q^4&{}[1,5,15,35,70,117,165,195,180,120,42]\\ 2^31^3&{}q^3Q^3&{}[1,4,11,25,49,86,131,178,212,218,180,117,48]\\ 2^21^5&{}qQ^2&{}[1,3,7,13,22,34,49,58,61,57,46,27]\\ 21^7&{}Q&{}[1,2,3,4,5,6,7,8]\\ 1^9&{}1&{}[1]\\ \mathbf{10}&{}q^{36}Q^9&{}[1]\\ 91&{}q^{35}Q^8&{}[1,9]\\ 82&{}q^{33}Q^8&{}[1,9,35]\\ 81^2&{}q^{33}Q^7&{}[1,8,36]\\ 73&{}q^{31}Q^8&{}[1,9,35,75]\\ 721&{}q^{30}Q^7&{}[1,9,44,136,160]\\ 71^3&{}q^{30}Q^6&{}[1,7,28,84]\\ 64&{}q^{29}Q^8&{}[1,9,35,75,90]\\ 631&{}q^{28}Q^7&{}[1,9,44,146,325,315]\\ 62^2&{}q^{27}Q^7&{}[1,8,36,110,250,225]\\ 621^2&{}q^{26}Q^6&{}[1,8,36,119,312,434,350]\\ 61^4&{}q^{26}Q^5&{}[1,6,21,56,126]\\ 5^2&{}q^{28}Q^8&{}[1,8,27,48,42]\\ 541&{}q^{26}Q^7&{}[1,9,44,146,325,447,288]\\ 532&{}q^{24}Q^7&{}[1,9,44,146,360,654,828,450]\\ 531^2&{}q^{24}Q^6&{}[1,8,36,119,312,641,836,567]\\ 52^21&{}q^{22}Q^6&{}[1,8,36,119,312,676,1036,1067,525]\\ 521^3&{}q^{21}Q^5&{}[1,7,28,84,209,445,626,672,448]\\ 51^5&{}q^{21}Q^4&{}[1,5,15,35,70,126]\\ 4^22&{}q^{23}Q^7&{}[1,8,36,110,250,404,486,252]\\ 4^21^2&{}q^{23}Q^6&{}[1,7,29,90,222,419,507,300]\\ 43^2&{}q^{21}Q^7&{}[1,8,36,110,250,432,533,492,210]\\ 4321&{}q^{19}Q^6&{}[1,9,44,154,431,988,1877,2838,3217,2304,768]\\ 431^3&{}q^{19}Q^5&{}[1,7,28,84,209,445,791,1077,1033,525]\\ 42^3&{}q^{18}Q^6&{}[1,7,28,84,200,392,644,801,693,300]\\ 42^21^2&{}q^{16}Q^5&{}[1,7,29,90,231,507,973,1540,2026,2047,1432,567]\\ 421^4&{}q^{15}Q^4&{}[1,6,21,56,126,251,446,601,676,616,350]\\ 41^6&{}q^{15}Q^3&{}[1,4,10,20,35,56,84]\\ 3^31&{}q^{18}Q^6&{}[1,7,28,84,200,392,609,711,558,210]\\ 3^22^2&{}q^{15}Q^6&{}[1,7,29,90,222,454,782,1130,1338,1221,774,252]\\ 3^221^2&{}q^{14}Q^5&{}[1,7,29,90,231,507,973,1615,2281,2647,2347,1422,450]\\ 3^21^4&{}q^{14}Q^4&{}[1,5,16,40,86,165,281,395,461,425,225]\\ 32^31&{}q^{11}Q^5&{}[1,7,28,84,209,445,826,1352,1918,2323,2323,1803,993,288]\\ 32^21^3&{}q^9Q^4&{}[1,6,22,62,147,307,572,962,1432,1897,2186,2121,1635,935,315]\\ 321^5&{}q^8Q^3&{}[1,5,15,35,70,126,209,315,395,435,420,334,160]\\ 31^7&{}q^8Q^2&{}[1,3,6,10,15,21,28,36]\\ \end{array}\\&\begin{array}{lll} 2^5&{}q^{10}Q^5&{}[1,5,15,35,70,117,165,195,180,120,42]\\ 2^41^2&{}q^6Q^4&{}[1,5,16,40,86,165,281,430,591,725,775,710,525,285,90]\\ 2^31^4&{}q^3Q^3&{}[1,4,11,25,50,90,150,225,310,390,449,461,409,310,190,75]\\ 2^21^6&{}qQ^2&{}[1,3,7,13,22,34,50,69,82,88,87,78,61,35]\\ 21^8&{}Q&{}[1,2,3,4,5,6,7,8,9]\\ 1^{10}&{}1&{}[1] \end{array} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, D., Kirillov, A. Jordan Types of Triangular Matrices over a Finite Field. Arnold Math J. 8, 543–559 (2022). https://doi.org/10.1007/s40598-022-00214-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-022-00214-1

Keywords

Navigation