Skip to main content
Log in

Renormalization of Bicritical Circle Maps

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

A general ansatz in Renormalization Theory, already established in many important situations, states that exponential convergence of renormalization orbits implies that topological conjugacies are actually smooth (when restricted to the attractors of the original systems). In this paper, we establish this principle for a large class of bicritical circle maps, which are \(C^3\) circle homeomorphisms with irrational rotation number and exactly two (non-flat) critical points. The proof presented here is an adaptation, to the bicritical setting, of the one given by de Faria and de Melo in (J Eur Math Soc 1:339–392, 1999) for the case of a single critical point. When combined with the recent papers (Estevez et al. in Complex bounds for multicritical circle maps with bounded type rotation number, arXiv:2005.02377, 2020; Yampolsky in C R Math Rep Acad Sci Can 41:57–83, 2019), our main theorem implies \(C^{1+\alpha }\) rigidity for real-analytic bicritical circle maps with rotation number of bounded type (Corollary 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Avila, A.: On rigidity of critical circle maps. Bull. Braz. Math. Soc. 44, 611–619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Faria, E.: Asymptotic rigidity of scaling ratios for critical circle mappings. Ergod. Theory Dyn. Syst. 19, 995–1035 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Faria, E., Guarino, P.: Real bounds and Lyapunov exponents. Discrete Contin. Dyn. Syst. A 36, 1957–1982 (2016)

    MathSciNet  MATH  Google Scholar 

  4. de Faria, E., Guarino, P.: Quasisymmetric orbit-flexibility of multicritical circle maps. Ergod. Theory Dyn. Syst. (to appear)

  5. de Faria, E., Guarino, P.: There are no -finite absolutely continuous invariant measures for multicritical circle maps. Nonlinearity 34, 6727–6749 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Faria, E., Guarino, P.: Dynamics of multicritical circle maps. São Paulo J. Math. Sci. (SPJM) (to appear)

  7. de Faria, E., de Melo, W.: Rigidity of critical circle mappings I. J. Eur. Math. Soc. 1, 339–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Faria, E., de Melo, W.: Rigidity of critical circle mappings II. J. Am. Math. Soc. 13, 343–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Melo, W., van Strien, S.: One-dimensional Dynamics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  10. Estevez, G., de Faria, E.: Real bounds and quasisymmetric rigidity of multicritical circle maps. Trans. Am. Math. Soc. 370, 5583–5616 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Estevez, G., de Faria, E., Guarino, P.: Beau bounds for multicritical circle maps. Indag. Math. 29, 842–859 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Estevez, G., Smania, D., Yampolsky, M.: Complex bounds for multicritical circle maps with bounded type rotation number (2020). arXiv:2005.02377

  13. Gorbovickis, I., Yampolsky, M.: Rigidity, universality, and hyperbolicity of renormalization for critical circle maps with non-integer exponents. Ergod. Theory Dyn. Syst. 40, 1282–1334 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guarino, P., de Melo, W.: Rigidity of smooth critical circle maps. J. Eur. Math. Soc. 19, 1729–1783 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guarino, P., Martens, M., de Melo, W.: Rigidity of critical circle maps. Duke Math. J. 167, 2125–2188 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herman, M.: Conjugaison quasi-simétrique des homéomorphismes du cercle à des rotations (manuscript) (1988)

  17. Khanin, K., Teplinsky, A.: Robust rigidity for circle diffeomorphisms with singularities. Invent. Math. 169, 193–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khinchin, A.: Continued Fractions. Dover Publications Inc. (reprint of the 1964 translation) (1997)

  19. Khmelev, D., Yampolsky, M.: The rigidity problem for analytic critical circle maps. Mosc. Math. J. 6, 317–351 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Światek, G.: Rational rotation numbers for maps of the circle. Commun. Math. Phys. 119, 109–128 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yampolsky, M.: Complex bounds for renormalization of critical circle maps. Ergod. Theory Dyn. Syst. 19, 227–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yampolsky, M.: The attractor of renormalization and rigidity of towers of critical circle maps. Commun. Math. Phys. 218, 537–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yampolsky, M.: Hyperbolicity of renormalization of critical circle maps. Publ. Math. IHES. 96, 1–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yampolsky, M.: Renormalization horseshoe for critical circle maps. Commun. Math. Phys. 240, 75–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yampolsky, M.: Renormalization of bi-cubic circle maps. C. R. Math. Rep. Acad. Sci. Can. 41, 57–83 (2019)

    MathSciNet  Google Scholar 

  26. Yoccoz, J.-C.: Il n’y a pas de contre-exemple de Denjoy analytique. C. R. Acad. Sc. Paris 298, 141–144 (1984)

  27. Zakeri, S.: Dynamics of cubic Siegel polynomials. Commun. Math. Phys. 206, 185–233 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Guarino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G.E. was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. P.G. was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) grant 23038.009189/2013-05.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estevez, G., Guarino, P. Renormalization of Bicritical Circle Maps. Arnold Math J. 9, 69–104 (2023). https://doi.org/10.1007/s40598-022-00199-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-022-00199-x

Keywords

Mathematics Subject Classification

Navigation