Skip to main content
Log in

Open Problems on Billiards and Geometric Optics

  • Problem Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

This is a collection of problems composed by some participants of the workshop “Differential Geometry, Billiards, and Geometric Optics” that took place at CIRM on October 4–8, 2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Supported by ISF Grant 580/20.

  2. Partially supported by Laboratory of Dynamical Systems and Applications, HSE University, of the Ministry of science and higher education of the RF Grant ag. No 075-15-2019-1931 and by RFBR and JSPS (research project 19-51-50005).

  3. Supported by CIDMA through FCT (Fundação para a Ciência e a Tecnologia), ref. UIDB/04106/2020.

  4. More precisely, let a particle hit the body at a regular point x of its boundary. One needs to take an inertial reference system in which the point x is at rest; in this system the reflection occurs according to the familiar billiard law.

  5. Supported by NSF Grant DMS-2005444.

References

  1. Albers, P., Tabachnikov, S.: Introducing symplectic billiards. Adv. Math. 333, 822–867 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers, P., Banhatti, G., Sadlo, F., Schwartz, R., Tabachnikov, S.: Polygonal symplectic billiards. arXiv:1912.09404

  3. Aougab, T., Sun, X., Tabachnikov, S., Wang, Y.: On curves and polygons with the equiangular chord property. Pacific J. Math. 274, 305–324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, V.: From Hilbert’s superposition problem to dynamical systems, 1–18. The Arnoldfest. Amer. Math. Soc, Providence, RI (1999)

  5. Arnold, M., Bialy, M.: Nonsmooth convex caustics for Birkhoff billiards. Pacific J. Math. 295, 257–269 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, M.: Sur les caustiques de surfaces en dimension 3. C.R. Acad. Sci. Paris Ser. I Math. 311, 333–336 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Berger, M.: Seules les quadriques admettent des caustiques. Bull. Soc. Math. France 123, 107–116 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bialy, M., Mironov, A.: Angular billiard and algebraic Birkhoff conjecture. Adv. Math. 313, 102–126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bialy, M., Mironov, A.: The Birkhoff–Poritsky conjecture for centrally-symmetric billiard tables. arXiv:2008.03566

  10. Bor, G., Tabachnikov, S.: Cusps of caustics by reflection. In preparation

  11. Fierobe, C.: Examples of reflective projective billiards. arXiv:2002.09845

  12. Fierobe, C.: Projective and complex billiards, periodic orbits and Pfaffian systems, PhD thesis, (2021). arXiv:2107.01888

  13. Genin, D., Khesin, B., Tabachnikov, S.: Geodesics on an ellipsoid in Minkowski space. Enseign. Math. 53, 307–331 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Glutsyuk, A.: Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup. Israel J. Math. (to appear)

  15. Guillemin, V., Melrose, R.: The Poisson summation formula for manifolds with boundary. Adv. Math. 32, 204–232 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gruber, P.: Only ellipsoids have caustics. Math. Ann. 303, 185–194 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gutkin, E.: Capillary floating and the billiard ball problem. J. Math. Fluid Mech. 14, 363–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hanusa, C., Mahankali, A.: A billiards-like dynamical system for attacking chess pieces. Eur. J. Combin. 95, 26 (2021). (Paper No. 103341)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ivrii, V.: The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. Func. Anal. Appl. 14(2), 98–106 (1980)

    Article  MathSciNet  Google Scholar 

  20. John, F.: The Dirichlet Problem for a hyperbolic equation. Am. J. Math. 63, 141–154 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaloshin, V., Sorrentino, A.: On local Birkhoff Conjecture for convex billiards. Ann. Math. 188, 315–380 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaloshin, V., Sorrentino, A.: On the integrability of Birkhoff billiards. Phil. Trans. R. Soc. A 376, 0419 (2017). https://doi.org/10.1098/rsta.2017.0419

    Article  MATH  Google Scholar 

  23. Khesin, B., Tabachnikov, S.: Pseudo-Riemannian geodesics and billiards. Adv. Math. 221, 1364–1396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nogueira, A., Troubetzkoy, S.: Chess billiards. arXiv:2007.14773

  25. Perline, R.: Geometry of thin films. J. Nonlin. Sci. 29, 621–642 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Plakhov, A., Tabachnikov, S., Treschev, D.: Billiard transformations of parallel flows: a periscope theorem. J. Geom. Phys. 115, 157–166 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Poritsky, H.: The billiard ball problem on a table with a convex boundary—an illustrative dynamical problem. Ann. Math. 51, 446–470 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sinclair, R.: On the last geometric statement of Jacobi. Experiment. Math. 12, 477–485 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sobolev, S.: On a new problem of mathematical physics. Izvestia Akad. Nauk SSSR Ser. Mat. 18, 3–50 (1954)

    MathSciNet  MATH  Google Scholar 

  30. Tabachnikov, S.: Commuting dual billiard maps. Geom. Dedicata 53, 57–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tabachnikov, S.: Exact transverse line fields and projective billiards in a ball. GAFA 7, 594–608 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Tabachnikov, S.: Introducing projective billiards. Ergodic Theory Dyn. Syst. 17, 957–976 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tabachnikov, S.: Geometry and billiards. Amer. Math. Soc, Providence, RI (2005)

  34. Tabachnikov, S.: Remarks on rigidity properties of conics. Regul. Chaotic Dyn. arXiv:2110.08909

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Tabachnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bialy, M., Fierobe, C., Glutsyuk, A. et al. Open Problems on Billiards and Geometric Optics. Arnold Math J. 8, 411–422 (2022). https://doi.org/10.1007/s40598-022-00198-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-022-00198-y

Keywords

Navigation