Skip to main content
Log in

Dynamics of Polynomial Diffeomorphisms of \(\mathbb {C}^2\): Combinatorial and Topological Aspects

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

The Fig. 1 was drawn by Shigehiro Ushiki using his software called HenonExplorer. This complicated object is the Julia set of a complex Hénon map \(f_{c, b}(x, y)=(x^2+c-by, x)\) defined on \(\mathbb {C}^2\) together with its stable and unstable manifolds, hence it is a fractal set in the real 4-dimensional space! The purpose of this paper is to survey some results, questions and problems on the dynamics of polynomial diffeomorphisms of \(\mathbb {C}^2\) including complex Hénon maps with an emphasis on the combinatorial and topological aspects of their Julia sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Almost the same age as the IMS at Stony Brook.

  2. Please see the electronic version of this paper to distinguish the color of the curves in Figs. 2 and 3.

  3. Connectivity of \(\mathcal {S}_d\) is implicitly assumed in Blanchard et al. (1991). Its proof can be found in Corollary 6.2 of DeMarco and Pilgrim (2011).

  4. He was nicknamed “Mr. Counterexample” with admiration. He also gave a counterexample to the 14th problem of David Hilbert. See the paper by M. Miyanishi, Masayoshi Nagata (1927–2008) and his mathematics, Kyoto J. Math. 50 (2010), no. 4, 645–659.

  5. We are also interested in the set \(J_f^{*}\) defined as the support of the unique maximal entropy measure (Bedford and Smillie 1991a; Bedford et al. 1993a) (see Sect. 3.1). We see that \(J_f^{*}\subset J_f\) holds in general, and \(J_f^{*}=J_f\) can be shown when f is hyperbolic (Bedford and Smillie 1991a).

  6. By courtesy of Mathematics Library at Kyoto University.

  7. According to J. H. Przytycki, most likely Wada published the first paper in Japan devoted to topology in 1911/1912. See his article Notes to the early history of the knot theory in Japan, arXiv:math/0108072.

  8. In this article the word planar in Definition 5.1 is a special usage; it means complex one-dimensional (real two-dimensional).

  9. This is what we called the limit-quotient model in Ishii (2014).

  10. This is a 4D visualization project launched by K. Anjyo, Z. Arai, H. Inou, Y. Ishii, S. Kaji and K. Tateiri.

References

  • Arai, Z.: On loops in the hyperbolic locus of the complex Hénon map and their monodromies. Phys. D 334, 133–140 (2016)

    Article  MathSciNet  Google Scholar 

  • Arai, Z., Ishii, Y.: On parameter loci of the Hénon family. Preprint (2015). arXiv:1501.01368

  • Arai, Z., Ishii, Y., Takahasi, H.: Boundary of the horseshoe locus for the Hénon family (In preparation) (2017)

  • Ashley, J.: Marker automorphisms of the one-sided shift. Ergod. Theory Dyn. Syst. 10, 247–262 (1990)

    MathSciNet  MATH  Google Scholar 

  • Bedford, E.: Iteration of polynomial automorphisms of \({\bf {C}^2}\). In: Proceedings of the International Congress of Mathematicians, vol. I, II (Kyoto, 1990), pp 847–858. Math. Soc. Japan, Tokyo (1991)

  • Bedford, E.: Dynamics of rational surface automorphisms. In: Holomorphic Dynamical Systems, Lecture Notes in Math., pp 57–104, 1998. Springer, Berlin (2010)

  • Brdford, E.: Dynamics of polynomial diffeomorphisms in \(\mathbb{C}^2\): foliations and laminations. ICCM Not. 3(1), 58–63 (2015)

    MathSciNet  Google Scholar 

  • Bartholdi, L., Dudko, D., Nekrashevych, V.: Iterated monodromy groups of quadratic polynomials II (2015) (Manuscript)

  • Bartholdi, L., Grigorchuk, R.I., Nekrashevych, V.: From fractal groups to fractal sets. In: Grabner, P., Woess, W. (eds.) Fractals in Graz 2001, pp. 25–118. Trends Math, Birkhäuser (2003)

  • Bartholdi, L., Nekrashevych, V.: Thurston equivalence of topological polynomials. Acta Math. 197(1), 1–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford, E., Kim, K.: No smooth Julia sets for polynomial diffeomorphisms of \({\mathbb{C}}^2\) with positive entropy. Preprint (2015). arXiv:1506.01456

  • Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of \(\mathbf{C}^2\): IV. The measure of maximal entropy and laminar currents. Invent. Math. 112(1), 77–125 (1993a)

  • Bedford, E., Lyubich, M., Smillie, J.: Distribution of periodic points of polynomial diffeomorphisms of \(\mathbf{C}^2\). Invent. Math. 114(2), 277–288 (1993b)

  • Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbf{C}^2\): currents, equilibrium measure and hyperbolicity. Invent. Math. 103(1), 69–99 (1991a)

  • Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbf{C}^2\). II. Stable manifolds and recurrence. J. Am. Math. Soc. 4(4), 657–679 (1991b)

  • Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbf{C}^2\). III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. 294, 395–420 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbf{C}^2\). V. Critical points and Lyapunov exponents. J. Geom. Anal. 8(3), 349–383 (1998a)

  • Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbf{C}^2\). VI. Connectivity of \(J\). Ann. Math. (2) 148(2), 695–735 (1998b)

  • Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \({\bf {C}^2}\). VII. Hyperbolicity and external rays. Ann. Sci. École Norm. Sup. (4) 32(4), 455–497 (1999)

  • Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbf{C}^2\) VIII. Quasi-expansion. Am. J. Math. 124(2), 221–271 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford, E., Smillie, J.: The Hénon family: the complex horseshoe locus and real parameter space. In: Complex Dynamics, Contemp. Math., vol. 396, pp. 21–36. American Mathematical Society, Providence (2006)

  • Bedford, E., Smillie, J.: Real polynomial diffeomorphisms with maximal entropy: tangencies. Ann. Math. (2) 160(1), 1–26 (2004)

  • Bedford, E., Smillie, J.: Real polynomial diffeomorphisms with maximal entropy. II. Small Jacobian. Ergod. Theory Dyn. Syst. 26(5), 1259–1283 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford, E., Smillie, J.: A symbolic characterization of the horseshoe locus in the Hénon family. Ergod. Theory Dyn. Syst. (2017). doi:10.1017/etds.2015.113

  • Bedford, E., Smillie, J., Ueda, T.: Parabolic bifurcations in complex dimension \(2\). Preprint (2012). arXiv:1208.2577

  • Biham, O., Wenzel, W.: Characterization of unstable periodic orbits in chaotic attractors and repellers. Phys. Rev. Lett. 63(8), 819–822 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Biham, O., Wenzel, W.: Unstable periodic orbits and the symbolic dynamics of the complex Hénon map. Phys. Rev. A (3) 42(8), 4639–4646 (1990)

  • Blanchard, P., Devaney, R.L., Keen, L.: The dynamics of complex polynomials and automorphisms of the shift. Invent. Math. 104(3), 545–580 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Candel, A., Conlon, L.: Foliations I. Graduate Studies in Mathematics, vol. 23, pp. xiv+402. American Mathematical Society, Providence (2000)

  • de Carvalho, A., Lyubich, M., Martens, M.: Renormalization in the Hénon family, I: Universality but non-rigidity. J. Stat. Phys. 121(5–6), 611–669 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Devaney, R., Nitecki, Z.: Shift automorphisms in the Hénon mapping. Commun. Math. Phys. 67(2), 137–146 (1979)

    Article  MATH  Google Scholar 

  • Douady, A.: Descriptions of compact sets in \(\mathbf{C}\). In: Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), pp. 429–465. Publish or Perish, Houston (1993)

  • Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes. Partie I. Publications Mathématiques d’Orsay, 84-2. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. Partie II. With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac. Publications Mathématiques d’Orsay, 85-4, pp. v+154. Université de Paris-Sud, Département de Mathématiques, Orsay (1985)

  • DeMarco, R., Pilgrim, K.: Polynomial basins of infinity. Geom. Funct. Anal. 21(4), 920–950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dujardin, R., Lyubich, M.: Stability and bifurcations for dissipative polynomial automorphisms of \(\mathbb{C}^2\). Invent. Math. 200(2), 439–511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • El Hamouly, H., Mira, C.: Lien entre les propriétés d’un endomorphisme de dimension un et celles d’un difféomorphisme de dimension deux. C. R. Acad. Sci. Paris, Sér. I Math. 293(10), 525–528 (1981)

  • Fornæss, J.E., Sibony, N.: Complex Hénon mappings in \(\mathbf{C}^2\) and Fatou–Bieberbach domains. Duke Math. J. 65(2), 345–380 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • FractalAsm. http://www.math.cornell.edu/\(^\sim \)dynamics/Henon/SD4.html (2000)

  • Fried, D.: Finitely presented dynamical systems. Ergod. Theory Dyn. Syst. 7(4), 489–507 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dyn. Syst. 9(1), 67–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Grassberger, P., Kantz, H., Moenig, U.: On the symbolic dynamics of the Hénon map. J. Phys. A 22, 5217–5230 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Gambaudo, J.-M., van Strien, S., Tresser, C.: Hénon-like maps with strange attractors: there exist \(C^{\infty }\) Kupka–Smale diffeomorphisms on \(S^2\) with neither sinks nor sources. Nonlinearity 2(2), 287–304 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Gambaudo, J.-M., Tresser, C.: How horseshoes are created. In: Instabilities and Nonequilibrium Structures, III (Valparaíso, 1989), Math. Appl., vol . 64, pp. 13–25. Kluwer Acad. Publ., Dordrecht (1991)

  • Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Hubbard, J.H.: The Hénon mapping in the complex domain. In: Chaotic Dynamics and Fractals (Atlanta, Ga., 1985), Notes Rep. Math. Sci. Engrg., vol. 2, pp. 101–111. Academic Press, Orlando (1986)

  • Hubbard, J.H., Oberste-Vorth, R.W.: Hénon mappings in the complex domain. I. The global topology of dynamical space. Inst. Hautes Études Sci. Publ. Math. 79, 5–46 (1994)

    Article  MATH  Google Scholar 

  • Hubbard, J.H., Oberste-Vorth, R.W.: Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials. In: Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 464, pp. 89–132. Kluwer Academic Publishers, Dordrecht (1995)

  • Ishii, Y.: Hyperbolic polynomial diffeomorphisms of \(\mathbb{C}^2\). I: a non-planar map. Adv. Math. 218(2), 417–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Ishii, Y.: Hyperbolic polynomial diffeomorphisms of \(\mathbb{C}^2\). II: Hubbard trees. Adv. Math. 220(4), 985–1022 (2009)

  • Ishii, Y.: Corrigendum to [I2]. Adv. Math. 226(4), 3850–3855 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ishii, Y.: Hyperbolic polynomial diffeomorphisms of \(\mathbb{C}^2\). III: Iterated monodromy groups. Adv. Math. 255, 242–304 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ishii, Y.: MathSciNet review article for [Ko1] (2011)

  • Ishii, Y., Smillie, J.: Homotopy shadowing. Am. J. Math. 132(4), 987–1029 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ishii, Y., Smillie, J.: The homotopy kernel (In preparation) (2017)

  • Jung, H.W.E.: Über ganze birationale transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)

    MathSciNet  MATH  Google Scholar 

  • Kan, I., Koçak, H., Yorke, J.: Antimonotonicity: concurrent creation and annihilation of periodic orbits. Ann. Math. 136(4), 219–252 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Kahn, J.: A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics, Preprint (2006). arXiv:math/0609045

  • Koch, S.: SaddleDrop: a tool for studying dynamics in \({\mathbb{C}}^2\). In: Teichmüller Theory and Moduli Problem, Ramanujan Math. Soc. Lect. Notes Ser., vol. 10, pp. 465–479, Ramanujan Math. Soc., Mysore (2010)

  • Koch, S.: Private communications (2012)

  • Lau, E., Schleicher, D.: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Preprint (1994). arXiv:math/9411238

  • Lipa, C.: Monodromy and Hénon mappings. Ph.D Dissertation, Cornell University (2009)

  • Lyubich, M., Peters, H.: Classification of invariant Fatou components for dissipative Hénon maps. Geom. Funct. Anal. 24(3), 887–915 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J.: Nonexpansive Hénon maps. Adv. Math. 69(1), 109–114 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J.: Dynamics in one complex variable. 3rd edn. In: Annals of Mathematics Studies, vol. 160, pp. viii+304. Princeton University Press, Princeton (2006)

  • Milnor, J.: Periodic orbits, externals rays and the Mandelbrot set: an expository account. Géomtrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque 261(xiii), 277–333 (2000)

  • Milnor, J., Thurston, W.: On Iterated Maps of the Interval. Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math., vol. 1342, pp. 465–563. Springer, Berlin, 1988 (1977) (See also a preprint version)

  • Milnor, J., Tresser, C.: On entropy and monotonicity for real cubic maps. With an appendix by Adrien Douady and Pierrette Sentenac. Commun. Math. Phys. 209(1), 123–178 (2000)

    Article  MATH  Google Scholar 

  • Morosawa, S., Nishimuram, Y., Taniguchi, M., Ueda, T.: Holomorphic Dynamics. Cambridge Studies in Advanced Mathematics, vol. 66, pp. xii+338. Cambridge University Press, Cambridge (2000)

  • Mummert, P.: Holomorphic shadowing for Hénon maps. Nonlinearity 21(12), 2887–2898 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Nagata, M.: On automorphism group of \(k[x,y]\). Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5, pp. v+53 . Kinokuniya Book Store Co., Ltd., Tokyo (1972)

  • Nekrashevych, V.: Self-Similar Groups. Mathematical Surveys and Monographs, vol. 117, pp. xii+231. American Mathematical Society, Providence (2005)

  • Nekrashevych, V.: Self-similar inverse semigroups and Smale spaces. Int. J. Algebra Comput. 16, 849–874 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Oberste-Vorth, R.W.: Complex horseshoes. Ph.D Dissertation, Cornell University (1987)

  • Oliva, R.: On the combinatorics of external rays in the dynamics of the complex Hénon map. Ph.D Dissertation, Cornell University (1998). http://www.math.cornell.edu/~dynamics/

  • Przytycki, F.: Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map. Invent. Math. 80, 161–179 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • SaddleDrop. http://www.math.cornell.edu/~dynamics/SD//index.html (2000)

  • Shestakov, I.P., Umirbaev, U.U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17(1), 197–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Smillie, J.: The entropy of polynomial diffeomorphisms of \(\mathbf{C}^2\). Ergod. Theory Dyn. Syst. 10(4), 823–827 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Smillie, J.: Dynamics in two complex dimensions. In: Proceedings of the International Congress of Mathematicians (Beijing, 2002), vol. III, pp. 373–382. Higher Ed. Press, Beijing (2002)

  • Stensønes, B.: Fatou–Bieberbach domains with \(C^{\infty }\)-smooth boundary. Ann. Math. (2) 145, 365–377 (1997)

  • Sterling, D., Meiss, J.D.: Computing periodic orbits using the anti-integrable limit. Phys. Lett. A 241(1–2), 46–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Takahasi, H.: Equilibrium measures at temperature zero for Hénon-like maps at the first bifurcation. SIAM J. Appl. Dyn. Syst. 15, 106–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Thurston, W.P.: On the combinatorics of iterated rational maps. In: Schleicher, D., Selinger, N., with an appendix by Schleicher. Complex dynamics, pp. 3–137. A. K. Peters, Wellesley (2009)

  • Ushiki, S.: HenonExplorer and StereoViewer. http://www.math.h.kyoto-u.ac.jp/~ushiki/ (2012)

  • Ushiki, S.: Phoenix. IEEE Trans. Circuits Syst. 35(7), 788–789 (1988)

    Article  Google Scholar 

  • Yoneyama, K.: Theory of continuous set of points (not finished). Tôhoku Math. J. 12, 43–158 (1917)

    Google Scholar 

Download references

Acknowledgements

The author thanks Laurent Bartholdi, Eric Bedford, Romain Dujardin, John Hubbard, Hiroyuki Inou, Sarah Koch, Mitsuhiro Shishikura, John Smillie and Shigehiro Ushiki for their comments on the subjects of the manuscript. He is also grateful to the anonymous referee for his/her careful reading of the manuscript and detailed comments. This research is partially supported by JSPS KAKENHI Grant Numbers 25287020 and 25610020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Ishii.

Additional information

Dedicated to Professor Shigehiro Ushiki for his retirement from Kyoto University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, Y. Dynamics of Polynomial Diffeomorphisms of \(\mathbb {C}^2\): Combinatorial and Topological Aspects. Arnold Math J. 3, 119–173 (2017). https://doi.org/10.1007/s40598-017-0066-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-017-0066-x

Keywords

Navigation