Skip to main content
Log in

Algebraic number fields generated by an infinite family of monogenic trinomials

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

For an infinite family of monogenic trinomials \(P(X)=X^3\pm 3rbX-b\in {\mathbb {Z}}[X]\), arithmetical invariants of the cubic number field \(L={\mathbb {Q}}(\theta )\), generated by a zero \(\theta\) of \(P(X)\), and of its Galois closure \(N=L(\sqrt{d_L})\) are determined. The conductor \(f\) of the cyclic cubic relative extension \(N/K\), where \(K={\mathbb {Q}}(\sqrt{d_L})\) denotes the unique quadratic subfield of \(N\), is proved to be of the form \(3^eb\) with \(e\in \lbrace 1,2\rbrace\), which admits statements concerning primitive ambiguous principal ideals, lattice minima, and independent units in \(L\). The number \(m\) of non-isomorphic cubic fields \(L_1,\ldots ,L_m\) sharing a common discriminant \(d_{L_i}=d_L\) with \(L\) is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Sem. Univ. Hamburg 5, 353–363 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, E.: Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7, 46–51 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beach, B. D., Williams, H. C., Zarnke, C. R.: Some computer results on units in quadratic and cubic fields, Proc. \(25\)th Summer Meeting of the Can. Math. Congress, Lakehead Univ., Thunder Bay, Ontario, 609–648 (1971)

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosma, W., Cannon, J. J., Fieker, C., Steels, A.: (eds) Handbook of Magma functions, Ed. 2.27, Sydney, (2022)

  6. Boughaleb, O., Soullami, A., Sahmoudi, M.: On relative monogeneity of a family of number fields defined by \(X^{p^n}+aX^{p^s}-b\), submitted to Boletín de la Sociedad Matemática Mexicana, (2022)

  7. Chavan, S.: A note on splitting of primes in cubic number fields, accepted by Acta Math. Hung., (2022)

  8. Delone, B. N., Faddeev, D. K.: Teoriya Irratsional’nosteĭ Tret’eĭ Stepeni (The theory of irrationalities of the third degree), Trudy Mat. Inst. Steklov 11, 1940, AMS Transl. of Math. Monographs, Vol. 10, Amer. Math. Soc., Providence, Rhode Island, 1964, Second printing, 1978

  9. Fieker, C.: Computing class fields via the Artin map. Math. Comp. 70(235), 1293–1303 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hambleton, S.A., Williams, H.C.: Cubic fields with geometry. In: CMS Books in Mathematics. Canadian Mathematical Society. Springer (2018)

    Chapter  MATH  Google Scholar 

  11. Hasse, H.: Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Zeitschr. 31, 565–582 (1930)

    Article  MATH  Google Scholar 

  12. Llorente, P., Nart, E.: Effective determination of the decomposition of the rational primes in a cubic field. Proc. Am. Math. Soc. 87(4), 579–585 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Louboutin, S.: The fundamental unit of some quadratic, cubic or quartic orders. J. Ramanujan Math. Soc. 23(2), 191–210 (2008)

    MathSciNet  MATH  Google Scholar 

  14. MAGMA Developer Group, MAGMA Computational Algebra System, Version 2.27-2. University of Sydney (2022). http://magma.maths.usyd.edu.au

  15. Mayer, D.C.: Multiplicities of dihedral discriminants. Math. Comp. 58(198), 831–847; S55–S58 (1992). https://doi.org/10.1090/S0025-5718-1992-1122071-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Mayer, D.C.: Quadratic \(p\)-ring spaces for counting dihedral fields. Int. J. Number Theory 10(8), 2205–2242 (2014). https://doi.org/10.1142/S1793042114500754

    Article  MathSciNet  MATH  Google Scholar 

  17. Mayer, D.C.: Differential principal factors and Pólya property of pure metacyclic fields. Int. J. Number Theory 15(10), 1983–2025 (2019). https://doi.org/10.1142/S1793042119501094

    Article  MathSciNet  MATH  Google Scholar 

  18. Mayer, D.C.: Construction and classification of \(p\)-ring class fields modulo \(p\)-admissible conductors. Open J. Math. Sci. 5(1), 162–171 (2021). https://doi.org/10.30538/oms2021.0153

    Article  Google Scholar 

  19. Mayer, D.C.: Classifying multiplets of totally real cubic fields, Electronic. J. Math. 1, 1–40 (2021). https://doi.org/10.47443/ejm2021.0001

    Article  Google Scholar 

  20. Moser, N.: Unités et nombre de classes d’une extension Galoisienne diédrale de \({\mathbb{Q} }\). Abh. Math. Sem. Univ. Hamburg 48, 54–75 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagell, T.: Zur Theorie der kubischen Irrationalitäten. Acta Math. 55, 33–65 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahmoudi, M., Soullami, A.: On monogenicity of relative cubic-power pure extensions. Adv Math. Sci. J. (2020). https://doi.org/10.37418/amsj.9.9.40

    Article  MATH  Google Scholar 

  23. Scholz, A.: Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166, 201–203 (1932)

    MathSciNet  MATH  Google Scholar 

  24. Voronoĭ, G. F.: Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ (On a generalization of the algorithm of continued fractions), Doctoral Dissertation, Warsaw, (1896) (Russian)

  25. Williams, H. C., Zarnke, C. R.: Computer calculation of units in cubic fields, Proc. Second Manitoba Conf. on Numer. Math., 433–468 (1972)

  26. Williams, H.C., Continued fractions and number-theoretic computations, Proc. Number Theory Conf. Edmonton,: Rocky Mountain. J. Math. 15(1985), 621–655 (1983)

Download references

Acknowledgements

The first author acknowledges that his research was supported by the Austrian Science Fund (FWF): projects P26008-N25 and J0497-PHY, and by the Research Executive Agency of the European Union (EUREA). Both authors express their gratitude to the anonymous referee for suggestions improving the layout.

Funding

Research of the first author supported by the Austrian Science Fund (FWF): projects P26008-N25 and J0497-PHY, and by the Research Executive Agency of the European Union (EUREA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Mayer.

Additional information

Dedicated to the memory of Georgi F. Voronoi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, D.C., Soullami, A. Algebraic number fields generated by an infinite family of monogenic trinomials. Bol. Soc. Mat. Mex. 29, 1 (2023). https://doi.org/10.1007/s40590-022-00469-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-022-00469-w

Keywords

Mathematics Subject Classification

Navigation