Skip to main content
Log in

On metric semigroups-valued functions of bounded Riesz-\(\Phi \)-variation in several variables

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

Using classical techniques related to the so-called Hardy–Vitali variation, we present the class of X-valued functions of bounded \(\Phi \)-variation in several variables, where \((X,d,+ )\) is a metric semigroup. We exhibit some of the main properties of this class; among them, we show that this class can be made into a normed space and present a counterpart of the renowned Riesz’s Lemma for the case in which \(X=\mathbb {R}\) with its usual metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, C.R., Clarkson, J.A.: Properties of functions \(f(x, y)\) of bounded variation. Trans. Am. Math. Soc. 36, 711 (1934)

    MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Azíz, W.: Algunas extensiones a \(\mathbb{R}^{2}\) de la noción de funciones con \(\varphi \)-variación acotada en el sentido de Riesz y controlabilidad de las RNC, Tesis Doctoral para optar la título de Doctor en Ciencias, Facultad de Ciencias-UCV (2009)

  4. Bracamonte, M., Giménez, J., Merentes, N.: Vector valued functions of bounded bidimensiona \(\Phi \)-Variation. Ann. Funct. Anal. 4(1), 89–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bracamonte, M., Ereú, J., Giménez, J., Merentes, N.: Uniformly continuous superposition operators in the space of functions of bounded \(n\)-dimensional \(\Phi \)-variation. Demonstr. Math. 47(1), 56–68 (2014)

  6. Bracamonte, M., Ereú, J., Giménez, J., Merentes, N.: Uniformly bounded superposition operators in the space of functions of bounded \(n\)-dimensional \(\Phi \)-variation. Extr. Math. 29(1–2), 19–33 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Brudnyi, Y.: Multivariate functions of bounded (k, p)-variation, Banach spaces and their applications in analysis, Walter de Gruyter, Berlin, pp. 3757 (2007)

  8. Bugajewska, D.: On the superposition operator in the space of functions of bounded variation, revisted. Math. Comput. Model. 52(5–6), 791–796 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calderón, A.-P., Zygmund, A.: On the differentiability of functions which are of bounded variation in Tonelli’s sense. Rev. Univ. Mat. Argent. 20, 102–121 (1962)

  10. Clarkson, J.A., Adams, C.R.: On definitions of bounded variation for functions of two variables. Trans. Am. Math. Soc. 35, 824–854 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chistyakov V.V., Tretyachenko Y.: Maps of several variables of finite total variation and Helly-type selection principles. Part I in: J. Math. Ann. Appl. 370(2), 672–686 (2010), and Part II: in J. Math. Ann. Appl. 369(1), 82–93 (2010)

  12. Chistyakov V.V.: Functions of several variables of finite variation and superposition operators. In: Real Analysis Exchange 26th Summer Symposium, Lexington, VA, USA, pp. 61–66 (2002)

  13. Chistyakov V.V.: A selection principle for mappings of bounded variation of several variables. In: Real Analysis Exchange 27th Summer Symposium, Opava, Czech Republic, pp. 217–222 (2003)

  14. Chistyakov, V.V.: Selections of bounded variation. J. Appl. Anal. 10(1), 1–82 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chistyakov, V.V.: Generalized variation of mappings with applications to composition operators and multifunctions. Positivity 5(4), 323–358 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Harmonic analysis of the space BV. Rev. Mat. Iberoam. 19(1), 235–263 (2003)

  17. De Giorgi, E.: Su una teoria generale della misura n-1n-1-dimensionale in uno spazio a rr dimensioni. Ann. Mat. Pura Appl. (4). 36, 191–213 (1954) (Zbl 0055.28504)

  18. Federer, H.: Geometric measure theory. Volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer, New York Inc., New York (1969) (Zbl 0874.49001)

  19. Fichera, G.: Lezioni sulle trasformazioni lineari. Istituto matematico dell’Universit di Trieste. vol. I (1954)

  20. Hildebrandt, T.H.: Introduction to the Theory of Integration. Academic Press, New York (1963)

    MATH  Google Scholar 

  21. Jordan, C.: Sur la srie de Fourier, Comptes rendus hebdomadaires des sances de l’Acadmie des sciences 92: 228–230 (1881) (at Gallica) (This is, according to Boris Golubov, the first paper on functions of bounded variation)

  22. Leonov, A.S.: On the total variation for functions of several variables and a multidimensional analog of Helly’s selection principle. Math. Notes 63(1), 61–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maligranda L.: Orlicz Spaces and Interpolation, Seminars in Math. 5, University of Campinas, IMECC-UNICAMP, Brasil (1989)

  24. Riesz, F.: Untersuchungen über Systeme integrierbarer Funktionen. Math. Ann. 69, 449–497 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  25. Talalyan, F.A.: A multidimensional analogue of a theorem of F. Riesz, Sb. Math. 186(9), 1363–1374 (1995)

  26. Vitali G.: Sui gruppi di punti e sulle funzioni di variabili reali. Atti Accad. Sci. Torino 43, 75–92(1908)

  27. Ziemer, W.P.: Weakly Differentiable Functions, Graduate Texts in Mathematics, Sobolev spaces and functions of bounded variation. vol. 120, Springer, New York (1989)

Download references

Acknowledgments

The authors would like to thank the referee of the first version of this paper for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bracamonte.

Additional information

This research has been partly supported by the Central Bank of Venezuela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracamonte, M., Ereú, J., Giménez, J. et al. On metric semigroups-valued functions of bounded Riesz-\(\Phi \)-variation in several variables. Bol. Soc. Mat. Mex. 24, 133–153 (2018). https://doi.org/10.1007/s40590-016-0138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0138-2

Keywords

Mathematics Subject Classification

Navigation