Skip to main content
Log in

Uniformly continuous functions and quantization on the Fock space

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

With a family \((\mu _t)_{t>0}\) of Gaussian probability measures we consider the scale \((H_t^2)_{>0}\) of \(\mu _t\)-square integrable entire functions on \(\mathbb {C}^n\). Here t plays the role of Planck’s constant. For f and g in the space \(\mathrm{BUC}(\mathbb {C}^n)\) of all bounded and uniformly continuous complex valued functions on \(\mathbb {C}^n\) we show the asymptotic composition formula

$$\begin{aligned} \lim _{t\downarrow 0} \Vert T_f^{(t)} T_g^{(t)} -T^{(t)}_{fg} \Vert _t =0, \end{aligned}$$
(1)

where \(\Vert \cdot \Vert _t\) denotes the norm in \(\mathcal {L}(H_t^2)\) and \(T_f^{(t)}\) is the Toeplitz operator with symbol f. Different from previously known results (e.g. Borthwick, Perspectives on quantization. Contemporary mathematics, vol 214. AMS, Providence, pp 23–37, 1998; Coburn, Commun Math Phys 149:415–424, 1992) neither differentiability nor compact support of the operator symbols is assumed. We provide an example which indicates that (1) in general fails for rapidly oscillating bounded symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agbor, D., Bauer, W.: Heat flow and an algebra of Toeplitz operators. Integr. Equ. Oper. Theory 81(2), 271–299 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, W.: Berezin–Toeplitz quantization and composition formulas. J. Funct. Anal. 256(10), 3107–3142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, W., Coburn, L.A.: Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation. J. Reine Angew. Math. 703, 225–246 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bauer, W., Vasilevski, N.: On algebras generated by Toeplitz operators and their representations. (Preprint)

  5. Berezin, F.A.: Quantization. Math. USSR Isv. 8(5), 1109–1163 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal–Bargmann space. Trans. Am. Math. Soc. 301, 813–829 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \(\mathfrak{gl}(n), n \rightarrow \infty \) limits. Commun. Math. Phys. 165, 281–296 (1994)

  9. Borthwick, D.: Microlocal techniques for semiclassical problems in geometric quantization. In: Perspectives on Quantization. Contemp. Mathematics, vol. 214, pp. 23–37. AMS, Providence (1998)

  10. Borthwick, D., Lesniewski, A., Upmeier, H.: Non-perturbative deformation quantization of Cartan domains. J. Funct. Anal. 113, 153–176 (1993)

  11. Coburn, L.A.: Deformation estimates for Berezin–Toeplitz quantization. Commun. Math. Phys. 149, 415–424 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coburn, L.A.: The measure algebra of the Heisenberg group. J. Funct. Anal. 161, 509–525 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coburn, L.A.: On the Berezin–Toeplitz calculus. Proc. Amer. Math. Soc. 129(11), 3331–3338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engliš, M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227, 211–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klimek, S., Lesniewskii, A.: Quantum Riemann surfaces I: the unit disc. Commun. Math. Phys. 146, 103–122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rieffel, M.: Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122, 531–562 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Bauer.

Additional information

To Professor Sergei Grudsky on the occasion of his $$60{\mathrm{th}}$$ 60 th birthday.

This note partly was written at the workshop “Analytic Function Spaces and Operators on Them” at Tsinghua Sanya International Mathematical Form (TSIMF). W. Bauer acknowledges support through TSIMF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, W., Coburn, L.A. Uniformly continuous functions and quantization on the Fock space. Bol. Soc. Mat. Mex. 22, 669–677 (2016). https://doi.org/10.1007/s40590-016-0108-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0108-8

Keywords

Mathematics Subject Classification

Navigation