Skip to main content
Log in

The Gromov’s centralizer theorem for semisimple Lie group actions

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

We give a new version of the Gromov’s centralizer theorem in the case of semisimple Lie group actions and arbitrary rigid geometric structures of algebraic type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amores, A.M.: Vector fields of a finite type G-structures. J. Differ. Geom. 14, 1–6 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, J.: Rigid geometric structures, isometric actions, and algebraic quotients. Geometriae Dedicata 157, 153–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bader, U., Frances, C., Melnick, K.: An embedding theorem for automorphism groups of Cartan geometries. Geom. Funct. Anal. 19(2), 333–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candel, A., Quiroga-Barranco, R.: Connections preserving actions are topologically engaging. Bol. Soc. Mat. Mex. 100, 123–155 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Candel, A., Quiroga-Barranco, R.: Gromov’s centralizer theorem. Geometriae Dedicata 100, 123–155 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candel, A., Quiroga-Barranco, R.: Rigid and finite type geometric structures. Geometriae Dedicata 106, 123–143 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candel, A., Quiroga-Barranco, R.: Parallelisms, prolongations of Lie algebras and rigid geometric structures. Manuscr. Math. 113(3), 335–350 (2004)

    MathSciNet  MATH  Google Scholar 

  8. D’Ambra, G., Gromov, M.: Lectures in Transformations Groups: Geometry and Dynamics in Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 19–111. Cambridge, Lehigh Univ. Bethlehem (1991)

  9. Duistermaat, J.J., Kolk, J.A.: Lie Groups, Universitex. Springer, New York (1999)

    MATH  Google Scholar 

  10. Feres, R.: Dynamical Systems and Semisimple Groups in Tracts in Mathematics 126. Cambridge University Press, New York (1998)

    Google Scholar 

  11. Gromov, M.: Rigid Transformations Groups in Géométrie Différentielle, Paris 1986, pp. 65–139. Travaux en Cours, 33, Hermann, Paris (1988)

  12. Nomizu, K.: On local and global existence of Killing vector fields. Ann. Math. 72, 105–120 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosales-Ortega, J.: The Gromov’s centralizer theorem for semisimple Lie group actions. Ph.D. thesis, CINVESTAV-IPN (2005)

  14. Zimmer, R.J.: Ergodic Theory and Semi-simple Lie Groups. Birkhäuser, Boston (1984)

    Book  Google Scholar 

  15. Zimmer, R.J.: On the automorphism group of a compact Lorentz manifold and other geometric manifolds. Invent. Math. 83, 411 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zimmer, R.J.: Superrigidity, Ratner’s theorem and fundamental groups. Isr. J. Math. 74, 199–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zimmer, R.J.: Automorphism groups and fundamental group of geometric manifold. Proc. Symposia Pure Math. 54, 693–710 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Rosales-Ortega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales-Ortega, J. The Gromov’s centralizer theorem for semisimple Lie group actions. Bol. Soc. Mat. Mex. 23, 825–845 (2017). https://doi.org/10.1007/s40590-015-0084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-015-0084-4

Keywords

Mathematics Subject Classification

Navigation