Skip to main content
Log in

Stable carbon configurations

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

Molecular Mechanics models molecules as configurations of particles interacting via classical potentials. The specific geometry of covalent bonding in carbon is described by the combination of an attractive-repulsive two-body interaction and a three-body bond-orientation part. We investigate the strict local minimality of specific carbon configurations under general assumptions on the interaction potentials. Carbyne, graphene, some fullerenes, and diamond are proved to be stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allinger, N.L.: Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics. Wiley, Amsterdam (2010)

    Book  Google Scholar 

  2. Yeung, A.Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff-shape. Calc. Var. Partial Differ. Equ. 44, 81–100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baughman, R.H.: Dangerously seeking linear carbon. Science 312(5776), 1009–1110 (2006)

    Article  Google Scholar 

  4. Brenner, D.W.: Empirical potential for hydrocarbons for use in stimulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  5. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empitical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mater. 14, 783–802 (2002)

    Article  Google Scholar 

  6. Brook, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)

    Article  Google Scholar 

  7. Bundy, F.P., Kasper, J.S.: Hexagonal diamond: a new form of carbon. J. Chem. Phys. 46, 3437 (1967)

    Article  Google Scholar 

  8. Butenko, Y., Siller, L., Hunt, M.R.C.: Carbon onions. In: Gogotsi, Y., Presser, V. (eds.) Carbon Nanomaterials, pp. 279–302. CRC Press, New York (2014)

    Google Scholar 

  9. Campbell, E.K., Holz, M., Gerlic, D., Maier, J.P.: Laboratory confirmation of \(C_{60}^+\) as the carrier of two diffuse interstellar bands. Nature 523, 322323 (2015)

    Article  Google Scholar 

  10. Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2009)

    Article  Google Scholar 

  11. Clark, M., Cramer III, R.D., Van Opdenbosch, N.: Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 10, 982–1012 (1989)

    Article  Google Scholar 

  12. Clayden, J., Greeves, N., Warren, S.G.: Organic Chemistry. Oxford University Press, Oxford (2012)

    Google Scholar 

  13. Cox, B.J., Hill, J.M.: Exact and approximate geometric parameters for carbon nanotubes incorporating curvature. Carbon 45, 1453–1462 (2007)

    Article  Google Scholar 

  14. David, W.I.F., Ibberson, R.M., Matthewman, J.C., Prassides, K., Dennis, T.J.S., Hare, J.P., Kroto, H.W., Taylor, R., Walton, D.R.M.: Crystal structure and bonding of \(C_{60}\). Nature 353, 147–149 (1991)

    Article  Google Scholar 

  15. Davoli, E., Piovano, P., Stefanelli, U.: Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice. Preprint http://cvgmt.sns.it/paper/2862/. Submitted 2015

  16. Davoli, E., Piovano, P., Stefanelli, U.: Wulff shape emergence in graphene. Math. Models Methods Appl. Sci. (2016). doi:10.1142/S0218202516500536

  17. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Carbon fibers based on \(C_{60}\) ad their symmetry. Phys. Rev. B 45(11), 6234–6242 (1992)

    Article  Google Scholar 

  18. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33, 883–891 (1995)

    Article  Google Scholar 

  19. Weinan, E., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286, 1099–1140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farmer, B., Esedo\(\bar{\rm g}\)lu, S., Smereka, P.: Crystallization for a Brenner-like potential. Commun. Math. Phys. (2016). doi:10.1007/s00220-016-2732-6

  21. Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218, 363–416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Friedrich, M., Piovano, P., Stefanelli, U.: The geometry of \(C_{60}\): a rigorous approach via molecular mechanics. SIAM J. Appl. Math. (2016, to appear)

  23. Friesecke, G., Theil, F.: Molecular Geometry Optimization, Models. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics, pp. 951–957. Springer, New York (2015)

  24. Gajbhiye, S.O., Singh, S.P.: Vibration characteristics of open- and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff-Brenner potential. Acta Mech. 226, 3565–3586 (2015)

    Article  MathSciNet  Google Scholar 

  25. van Gunsteren, W.F., Berendsen, H.J.C.: Groningen Molecular Simulation (GROMOS) Library Manual. BIOMOS b.v, Groningen (1987)

    Google Scholar 

  26. Guo, H., Liu, R., Zeng, X.C., Wu, X.: Graphene-based architecture and assemblies. In: Jiang, D.-E., Chen, Z. (eds.) Graphene Chemistry: Theoretical Perspectives, pp. 153–182. Wiley, Amsterdam (2013)

    Chapter  Google Scholar 

  27. Hanson, J.C., Nordman, C.E.: The crystal and molecular structure of corannulene, \(C_{20}H_{10}\). Acta Cryst. B32, 1147–1153 (1976)

    Article  Google Scholar 

  28. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  29. Itoh, M., Kotani, K., Naito, H., Sunada, T., Kawazoe, Y., Adschiri, T.: New metallic carbon crystal. Phys. Rev. Lett. 102, 055703 (2009)

    Article  Google Scholar 

  30. Itzhaki, L., Altus, E., Basch, H., Hoz, S.: Harder than diamond: determining the cross-sectional area and young’s modulus of molecular rods. Angew. Chem. 117, 7598 (2005)

    Article  Google Scholar 

  31. Itzhaki, L., Altus, E., Basch, H., Hoz, S.: Harder than diamond: determining the cross-sectional area and young’s modulus of molecular rods. Angew. Chem. Int. Ed. 44, 7432–7435 (2005)

    Article  Google Scholar 

  32. Jiang, H., Zhang, P., Liu, B., Huans, Y., Geubelle, P.H., Gao, H., Hwang, K.C.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Math. Sci. 28, 429–442 (2003)

    Article  Google Scholar 

  33. Jishi, R.A., Dresselhaus, M.S., Dresselhaus, G.: Symmetry properties and chiral carbon nanotubes. Phys. Rev. B 47, 166671–166674 (1993)

    Article  Google Scholar 

  34. Kamatgalimov, A.R., Kovalenko, V.I.: Deformation and thermodynamic instability of a \(C_{84}\) fullerene cage. Russ. J. Phys. Chem. A 84, 4L721–4L726 (2010)

    Google Scholar 

  35. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C 60: buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  Google Scholar 

  36. Kroto, H.W.: The stability of the fullerenes \(C_n\), with \(n=24, 28, 32, 36, 50, 60\) and 70. Nature 329, 529–531 (1987)

    Article  Google Scholar 

  37. Lazzaroni, G., Stefanelli, U.: Chain-like ground states in three dimensions. (2016, in preparation)

  38. Lee, R.K.F., Cox, B.J., Hill, J.M.: General rolled-up and polyhedral models for carbon nanotubes. Fuller. Nanot. Car. N. 19, 726–748 (2011)

    Article  Google Scholar 

  39. Lewars, E.G.: Computational Chemistry, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  40. Lin, F., Sørensen, E., Kallin, C., Berlinsky, J.: \(C_{20}\), the smallest fullerene. In: Sattler, D. (ed.) Handbook of Nanophysics: Clusters and Fullerenes. CRC Press, Taylor & Francis, New York (2010)

    Google Scholar 

  41. Liu, M., Artyukhov, V.I., Lee, H., Xu, F., Yakobson, B.I.: Carbyne from first principles: chain of \(C\) atoms, a nanorod or a nanorope? ACS Nano 7, 10075–10082 (2013)

    Article  Google Scholar 

  42. Mackay, A.L., Terrones, H.: Diamond from graphite. Nature 35, 762 (1991)

    Article  Google Scholar 

  43. Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Nonlinearity 27, 717–737 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: A numerical investigation on carbonnanotube geometries. Discr. Contin. Dyn. Syst. Ser. - S. (2016, to appear)

  45. Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geometries as optimal configurations. Submitted (2016)

  46. Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328, 545–571 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)

    Article  Google Scholar 

  48. El Kass, D., Monneau, R.: Atomic to continuum passage for nanotubes: a discrete Saint–Venant principle and error estimates. Arch. Ration. Mech. Anal. 213, 25–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nasibulin, A.G., et al.: A novel hybrid carbon material. Nature Nanotechnol. 2, 156–161 (2007)

    Article  Google Scholar 

  50. Rappé, A.K., Casewit, C.L.: Molecular Mechanics Across Chemistry. University Science Books, Sausalito, CA (1997)

    Google Scholar 

  51. Robertson, D.H., Brenner, D.W., Mintmire, J.W.: Energetics of nanoscale graphitic tubules. Phys. Rev. B 45, 12592–12595 (1992)

    Article  Google Scholar 

  52. Schein, S., Friedrich, T.: A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule for fullerenes with more than 60 vertices. Proc. Natl. Acad. Sci. USA 105, 19142–19147 (2008)

    Article  Google Scholar 

  53. Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff-shape. J. Stat. Phys. 153, 727–738 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 8, 5262–5271 (1985)

    Article  Google Scholar 

  55. Sunada, T.: Crystals that nature might miss creating. Notices Am. Math. Soc. 55, 208–215 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)

    Article  Google Scholar 

  57. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262, 209–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Vázquez, S., Camps, P.: Chemistry of pyramidalized alkenes. Tetrahedron 61, 5147–5208 (2005)

    Article  Google Scholar 

  59. Wade, L.G.: Organic Chemistry, 8th edn. Pearson Prentice Hall, New York (2012)

    Google Scholar 

  60. Weiner, P.K., Kollman, P.A.: AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comput. Chem. 2, 287–303 (1981)

    Article  Google Scholar 

  61. Yakobson, B.I., Campbell, M.P., Brabec, C.J., Bernholc, J.: High strain rate fracture and \(C\)-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The support of the Austrian Science Fund (FWF) Projects P 27052 and I 2375 is acknowledged. This work has been Funded by the Vienna Science and Technology Fund (WWTF) through Project MA14-009. Partial support by the Wolfgang Pauli Institute under the thematic project Crystals, Polymers, Materials is also acknowledged. The author is greatefully indebted to the anonymous referee for the careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulisse Stefanelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanelli, U. Stable carbon configurations. Boll Unione Mat Ital 10, 335–354 (2017). https://doi.org/10.1007/s40574-016-0102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-016-0102-0

Keywords

Mathematics Subject Classification

Navigation