Skip to main content
Log in

Converse theorems: from the Riemann zeta function to the Selberg class

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

This is an expanded version of the author’s lecture at the XX Congresso U.M.I., held in Siena in September 2015. After a brief review of L-functions, we turn to the classical converse theorems of Hamburger, Hecke and Weil, and to some later developments. Finally we present several results on converse theorems in the framework of the Selberg class of L-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein, J., Gelbart, S.: An Introduction to the Langlands Program. Birkhäuser, Basel (2004)

    Google Scholar 

  2. Bertolini, M., Canuto, G.: La congettura di Shimura–Taniyama–Weil. Boll. U.M.I. (7) 19-A, 213–247 (1996)

  3. Bochner, S.: On Riemann’s functional equation with multiple gamma factors. Ann. Math. 67, 29–41 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bombieri, E.: The Rosetta Stone of \(L\)-functions. In: Benedicks, M., et al. (eds.) Perspectives in Analysis, pp. 1–15. Springer, Berlin (2005)

    Chapter  Google Scholar 

  5. Bombieri, E.: The Riemann Hypothesis. In: Carlson, J., et al. (eds.) The Millennium Prize Problems, pp. 107–124. Amer. Math. Soc., Providence (2006)

    Google Scholar 

  6. Bombieri, E.: The classical theory of zeta and \(L\)-functions. Milan J. Math. 78, 11–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cogdell, J.W.: \(L\)-functions and converse theorems for \(GL_{n}\). In: Sarnak, P., Shahidi, F. (eds.) Automorphic Forms and Applications, pp. 97–177. Amer. Math. Soc., Providence (2007)

    Google Scholar 

  8. Conrey, J.B., Farmer, D.W.: An extension of Hecke’s converse theorem. Int. Math. Res. Not., 445–463 (1995)

  9. Conrey, J.B., Farmer, D.W., Odgers, B.E., Snaith, V.C.: A converse theorem for \(\Gamma _0(13)\). J. Number Theory 122, 314–323 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conrey, J.B., Ghosh, A.: On the Selberg class of Dirichlet series: small degrees. Duke Math. J. 72, 673–693 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diaconu, A., Perelli, A., Zaharescu, A.: A note on GL\(_2\) converse theorems. C. R. Acad. Sci. Paris Ser. I 334, 621–624 (2002)

    Article  MATH  Google Scholar 

  12. Hamburger, H.: Über die Riemannsche Funktionalgleichung der \(\zeta \)-Funktion. Math. Z., 240–254 (1921)

  13. Hecke, E.: Lectures on Dirichlet Series, Modular Functions and Quadratic Forms. Vanderhoeck & Ruprecht (1983)

  14. Ingham, A.E.: The Distribution of Prime Numbers—reissued with a foreword of R.C.Vaughan. Cambridge University Press, Cambridge (1990)

  15. Iwaniec, H.: Topics in Classical Automorphic Forms. Amer. Math. Soc, Providence (1997)

    Book  MATH  Google Scholar 

  16. Kaczorowski, J.: Axiomatic theory of \(L\)-functions: the Selberg class. In: Perelli, A., Viola, C. (eds.) Analytic Number Theory, Springer L.N., vol. 1891, pp. 133–209. C.I.M.E. Summer School, Cetraro (2006)

    Google Scholar 

  17. Kaczorowski, J., Molteni, G., Perelli, A.: Unique factorization results for semigroups of \(L\)-functions. Math. Ann. 341, 517–527 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaczorowski, J., Molteni, G., Perelli, A.: A converse theorem for Dirichlet \(L\)-functions. Comment Math. Helv. 85, 463–483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class, I: \(0\le d \le 1\). Acta Math. 182, 207–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaczorowski, J., Perelli, A.: The Selberg class: a survey. In: Györy, K., et al. (eds.) Number Theory in Progress, Proc. Conf. in Honor of A. Schinzel, pp. 953–992. de Gruyter (1999)

  21. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class, V: \(1< d < 5/3\). Invent Math. 150, 485–516 (2002)

  22. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class, VI: non-linear twists. Acta Arith. 116, 315–341 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class, VII: \(1< d < 2\). Ann. Math. 173, 1397–1441 (2011)

  24. Kaczorowski, J., Perelli, A.: A correspondence theorem for \(L\)-functions and partial differential operators. Publ. Math. Debrecen 79, 497–505 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaczorowski, J., Perelli, A.: Twists, Euler products and a converse theorem for \(L\)-functions of degree 2. Annali Scuola Normale Sup. Pisa (V) 14, 441–480 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Kaczorowski, J., Perelli, A.: Twists and resonance of \(L\)-functions, I. J. Eur. Math. Soc. 18, 1349–1389 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kaczorowski, J., Perelli, A.: Twists and resonance of \(L\)-functions, II. Int. Math. Res. Notices (2016, to appear)

  28. Kaczorowski, J., Perelli, A.: A weak converse theorem for degree 2 \(L\)-functions with conductor 1. Preprint

  29. Lang, S.: Algebraic Number Theory, 2nd edn. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  30. Lozano-Robledo, Á.: Elliptic Curves, Modular Forms, and Their \(L\)-functions. Amer. Math. Soc, Providence (2011)

    Book  MATH  Google Scholar 

  31. Maass, H.: Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 121, 141–183 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  32. Molteni, G.: Multiplicity results for the functional equation of the Dirichlet \(L\)-functions. Acta Arith. 145, 43–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Molteni, G.: Multiplicity results for the functional equation of the Dirichlet \(L\)-functions: case \(p=2\). Acta Arith. 145, 71–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Murty, M.R.: Selberg’s conjectures and Artin \(L\)-functions. Bull. A. M. S. 31, 1–14 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  36. Neukirch, J.: Algebraic Number Theory. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  37. Ogg, A.: Modular Forms and Dirichlet Series. Benjamin, New York (1969)

    MATH  Google Scholar 

  38. Perelli, A.: A survey of the Selberg class of \(L\)-functions, part I. Milan J. Math. 73, 19–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Perelli, A.: A survey of the Selberg class of \(L\)-functions, part II. Riv. Mat. Univ. Parma (7) 3*, 83–118 (2004)

  40. Perelli, A.: Non-linear twists of \(L\)-functions: a survey. Milan J. Math. 78, 117–134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Piatetski-Shapiro, I., Raghunathan, R.: On Hamburger’s theorem. Amer. Math. Soc. Transl. (2) 169, 109–120 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Richert, H.-E.: Über Dirichletreihen mit Funktionalgleichung. Publ. Inst. Math. Acad. Serbe Sci. 11, 73–124 (1957)

    MathSciNet  MATH  Google Scholar 

  43. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Bombieri, E., et al. (eds.) Proc. Amalfi Conf. Analytic Number Theory, pp. 367–385. Università di Salerno 1992; Collected Papers, vol. II, pp. 47–63. Springer, Berlin (1991)

  44. Serre, J.-P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures) - Séminaire Delange-Pisot-Poitou 1969/70, n\(^{\rm o}\) 19, Sécretariat Mathématique (1970)

  45. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Revised by D.R. Heath-Brown. Oxford University Press, Oxford (1986)

  46. Wiles, A.: The Birch and Swinnerton–Dyer Conjecture. In: Carlson, J., et al. (eds.) The Millennium Prize Problems, pp. 107–124. Amer. Math. Soc, Providence (2006)

    Google Scholar 

Download references

Acknowledgments

We wish to thank Sandro Bettin, Giuseppe Molteni, Stefano Vigni and the referee for carefully reading the paper and suggesting several improvements. The author is member of the GNAMPA group of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Perelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perelli, A. Converse theorems: from the Riemann zeta function to the Selberg class. Boll Unione Mat Ital 10, 29–53 (2017). https://doi.org/10.1007/s40574-016-0085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-016-0085-x

Keywords

Mathematics Subject Classification

Navigation