Skip to main content

Advertisement

Log in

Environmental Metal Exposure, Neurodevelopment, and the Role of Iron Status: a Review

  • Metals and Health (TR Sanchez and M Tellez-Plaza, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Exposure to environmental metals, like lead (Pb), manganese (Mn), and methylmercury (Me-Hg), has consistently been implicated in neurodevelopmental dysfunction. Recent research has focused on identifying modifying factors of metal neurotoxicity in childhood, such as age, sex, and co-exposures. Iron (Fe) status is critical for normal cognitive development during childhood, and current mechanistic, animal, and human evidence suggests that Fe status may be a modifier or mediator of associations between environmental metals and neurodevelopment. The goals of this review are to describe the current state of the epidemiologic literature on the role of Fe status (i.e., hemoglobin, ferritin, blood Fe concentrations) and Fe supplementation in the relationship between metals and children’s neurodevelopment, and to identify research gaps.

Recent Findings

We identified 30 studies in PubMed and EMBASE that assessed Fe status as a modifier, mediator, or co-exposure of associations of Pb, Me-Hg, Mn, copper (Cu), zinc (Zn), arsenic (As), or metal mixtures measured in early life (prenatal period through 8 years of age) with cognition in children. In experimental studies, co-supplementation of Fe and Zn was associated with better memory and cognition than supplementation with either metal alone. Several observational studies reported interactions between Fe status and Pb, Mn, Zn, or As in relation to developmental indices, memory, attention, and behavior, whereby adverse associations of metals with cognition were worse among Fe-deficient children compared to Fe-sufficient children. Only two studies quantified joint associations of complex metal mixtures that included Fe with neurodevelopment, though findings from these studies were not consistent.

Summary

Findings support memory and attention as two possible cognitive domains that may be both vulnerable to Fe deficiency and a target of metals toxicity. Major gaps in the literature remain, including evaluating Fe status as a modifier or mediator of metal mixtures and cognition. Given that Fe deficiency is the most common nutritional deficiency worldwide, characterizing Fe status in studies of metals toxicity is important for informing public health interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Olusanya BO, Davis AC, Wertlieb D, et al. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob Heal. 2018;6:e1100–21.

    Article  Google Scholar 

  2. Tyler CR, Allan AM. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Heal Rep. 2014;1:132–47.

    Article  Google Scholar 

  3. Sanders T, Liu Y, Buchner V, Tchounwou PB. Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health. 2009;24:15–45.

    Article  CAS  Google Scholar 

  4. Molina RM, Phattanarudee S, Kim J, Thompson K, Wessling-Resnick M, Maher TJ, Brain JD. Ingestion of Mn and Pb by rats during and after pregnancy alters iron metabolism and behavior in offspring. Neurotoxicology. 2011;32:413–22.

    Article  CAS  Google Scholar 

  5. Zoni S, Lucchini RG. Manganese exposure: cognitive, motor and behavioral effects on children: A review of recent findings. Curr Opin Pediatr. 2013;25:255–60.

    Article  CAS  Google Scholar 

  6. Julvez J, Yorifuji T, Choi AL, Grandjean P. Epidemiological evidence on methylmercury neurotoxicity. In: Methylmercury Neurotox. US: Springer; 2012. p. 13–35.

    Chapter  Google Scholar 

  7. Sanders AP, Claus Henn B, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Heal reports. 2015;2:284–94.

    Article  CAS  Google Scholar 

  8. Lucchini R, Placidi D, Cagna G, Fedrighi C, Oppini M, Peli M, Zoni S. Manganese and Developmental Neurotoxicity. Adv Neurobiol. 2017;18:13–34.

  9. Bauer JA, Fruh V, Howe CG, White RF, Claus Henn B. Associations of metals and neurodevelopment: a review of recent evidence on susceptibility factors. Curr Epidemiol Rep. 2020;7:237–262. A recent review examining metals and neurodevelopment in epidemiological studies, including susceptibility factors (like Fe).

  10. McCann S, Amadó MP, Moore SE. The role of iron in brain development: a systematic review. Nutrients. 2020;12:1–23. A recent review that outlines the biological importance of normal Fe status for neurodevelopment.

  11. Tseng PT, Cheng YS, Yen CF, et al. Peripheral iron levels in children with attention-deficit hyperactivity disorder: a systematic review and meta-analysis. Sci Rep. 2018;8:1–11. A recent review illustrating the importance of Fe status on attentional function in children.

  12. Wang Y, Huang L, Zhang L, Qu Y, Mu D. Iron status in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0169145.

    Article  Google Scholar 

  13. Lukowski AF, Koss M, Burden MJ, Jonides J, Nelson CA, Kaciroti N, Jimenez E, Lozoff B. Iron deficiency in infancy and neurocognitive functioning at 19 years: Evidence of long-term deficits in executive function and recognition memory. Nutr Neurosci. 2010;13:54–70.

    Article  CAS  Google Scholar 

  14. Halterman JS, Kaczorowski JM, Aligne CA, Auinger P, Szilagyi PG. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics. 2001;107:1381–6.

    Article  CAS  Google Scholar 

  15. Jáuregui-Lobera I. Iron deficiency and cognitive functions. Neuropsychiatr Dis Treat. 2014;10:2087–95.

    Article  Google Scholar 

  16. Parkin PC, Koroshegyi C, Mamak E, et al. Association between serum ferritin and cognitive function in early childhood. J Pediatr. 2020;217:189-191.e2. A recent article illustrating the association between altered Fe status and cognitive function in children.

  17. Roy A, Hu H, Bellinger DC, et al. Hemoglobin, lead exposure, and intelligence quotient: Effect modifcation by the DRD2 taq IA polymorphism. Environ Health Perspect. 2011;119:144–9.

    Article  CAS  Google Scholar 

  18. Ji X, Cui N, Liu J. Neurocognitive function is associated with serum iron status in early adolescents. Biol Res Nurs. 2017;19:269.

    Article  CAS  Google Scholar 

  19. Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT. Effects of micronutrients on metal toxicity. Environ Health Perspect. 1998;106:203–16.

    CAS  Google Scholar 

  20. Brain JD, Heilig E, Donaghey TC, Knutson MD, Wessling-Resnick M, Molina RM. Effects of iron status on transpulmonary transport and tissue distribution of Mn and Fe. Am J Respir Cell Mol Biol. 2006;34:330–7.

    Article  CAS  Google Scholar 

  21. Kordas K. Iron, Lead, and Children’s Behavior and Cognition. Annu Rev Nutr. 2010;30:123–48.

    Article  CAS  Google Scholar 

  22. Kordas K, Stoltzfus RJ. New evidence of iron and zinc interplay at the enterocyte and neural tissues. J Nutr. 2004;134:1295–8.

    Article  CAS  Google Scholar 

  23. Erikson KM, Shihabi ZK, Aschner JL, Aschner M. Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations. Biol Trace Elem Res. 2002;87:143–56.

    Article  CAS  Google Scholar 

  24. Horiguchi H, Oguma E, Kayama F. Cadmium induces anemia through interdependent progress of hemolysis, body iron accumulation, and insufficient erythropoietin production in rats. Toxicol Sci. 2011;122:198–210.

    Article  CAS  Google Scholar 

  25. Shokooh Saljooghi A, Delavar-mendi F. The Effect of Mercury in Iron Metabolism in Rats. J Clin Toxicol Heavy Met Toxic. 2013. https://doi.org/10.4172/2161-0495.S3-006.

    Article  Google Scholar 

  26. Turgut S, Polat A, Inan M, Turgut G, Emmungil G, Bican M, Karakus T, Genc O. Interaction between anemia and blood levels of iron, zinc, copper, cadmium and lead in children. Indian J Pediatr. 2007;74:827–30.

    Article  Google Scholar 

  27. López-Rodríguez G, Galván M, González-Unzaga M, Hernández Ávila J, Pérez-Labra M. Blood toxic metals and hemoglobin levels in Mexican children. Environ Monit Assess. 2017. https://doi.org/10.1007/S10661-017-5886-6.

    Article  Google Scholar 

  28. Weinhouse C, Ortiz EJ, Berky AJ, Bullins P, Hare-Grogg J, Rogers L, Morales A-M, Hsu-Kim H, Pan WK. Hair mercury level is associated with anemia and micronutrient status in children living near artisanal and small-scale gold mining in the Peruvian Amazon. Am J Trop Med Hyg. 2017;97:1886.

    Article  CAS  Google Scholar 

  29. Jang W-H, Lim K-M, Kim K, Noh J-Y, Kang S, Chang Y-K, Chung J-H. Low level of lead can induce phosphatidylserine exposure and erythrophagocytosis: a new mechanism underlying lead-associated anemia. Toxicol Sci. 2011;122:177–84.

    Article  CAS  Google Scholar 

  30. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci. 2015;16:29592.

    Article  CAS  Google Scholar 

  31. Ahyayauch H, Sansar W, Rendón-Ramírez A, Goñi FM, Bennouna M, Gamrani H. Effects of chronic and acute lead treatments on the biophysical properties of erythrocyte membranes, and a comparison with model membranes. FEBS Open Bio. 2013;3:212–7.

    Article  CAS  Google Scholar 

  32. Adams K, Johnson G, Hornowski K, TH L. The effect of copper on erythrocyte deformability: a possible mechanism of hemolysis in acute copper intoxication. Biochim Biophys Acta. 1979;550:279–287.

  33. Demchenkov EL, Nagdalian AA, Budkevich RO, Oboturova NP, Okolelova AI. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane. Ecotoxicol Environ Saf. 2021;208:111683.

    Article  CAS  Google Scholar 

  34. Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, Pandit S, Giri AK, Biswas T. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol Appl Pharmacol. 2008;230:57–66.

    Article  CAS  Google Scholar 

  35. Kutllovci-Zogaj D, Krasniqi S, Elezaj I, et al. Correlation between blood lead level and hemoglobin level in mitrovica children. Med Arch (Sarajevo, Bosnia Herzegovina). 2014;68:324–8.

    Google Scholar 

  36. Silver MK, Lozoff B, Meeker JD. Blood cadmium is elevated in iron deficient U.S. children: a cross-sectional study. Environ Health. 2013;12:117.

  37. Choi J, Kim S. Relationships of lead, copper, zinc, and cadmium levels versus hematopoiesis and iron parameters in healthy adolescents. Ann Clin Lab Sci. 2005;35:428–34.

    CAS  Google Scholar 

  38. Henríquez-Hernández LA, Boada LD, Carranza C, Pérez-Arellano JL, González-Antuña A, Camacho M, Almeida-González M, Zumbado M, Luzardo OP. Blood levels of toxic metals and rare earth elements commonly found in e-waste may exert subtle effects on hemoglobin concentration in sub-Saharan immigrants. Environ Int. 2017;109:20–8.

    Article  Google Scholar 

  39. Schildroth S, Friedman A, Bauer J, Claus Henn B. Associations of a metal mixture with iron status in U.S. adolescents: evidence from the National Health and Nutrition Examination Survey. New Dir Child Adolesc Heal. 2022. https://doi.org/10.1002/cad.20457

  40. Houghton LA, Parnell WR, Thomson CD, Green TJ, Gibson RS. Serum zinc is a major predictor of anemia and mediates the effect of selenium on hemoglobin in school-aged children in a nationally representative survey in New Zealand. J Nutr. 2016;146:1670–6.

    Article  CAS  Google Scholar 

  41. Abdelhaleim AF, Amer AY, Abdo Soliman JS. Association of zinc deficiency with iron deficiency anemia and its symptoms: results from a case-control study. Cureus. 2019. https://doi.org/10.7759/cureus.3811.

    Article  Google Scholar 

  42. Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob Heal. 2013;1:e16–25.

    Article  Google Scholar 

  43. Wright RO, Baccarelli A. Metals and Neurotoxicology. J Nutr. 2007;137:2809–13.

    Article  CAS  Google Scholar 

  44. McDermott S, Salzberg D, Anderson A, Shaw T, Lead J. Systematic review of chromium and nickel exposure during pregnancy and impact on child outcomes. J Toxicol Environ Health A. 2015;78:1348–68.

    Article  CAS  Google Scholar 

  45. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 2009;339:332–6.

    Article  Google Scholar 

  46. What are the WHO criteria for a diagnosis of anemia in children and adults? https://www.medscape.com/answers/198475-155060/what-are-the-who-criteria-for-a-diagnosis-of-anemia-in-children-and-adults. Accessed 22 Jul 2021.

  47. Hambidge M. Biomarkers of Trace Mineral Intake and Status. J Nutr. 2003;133:948S-955S.

    Article  CAS  Google Scholar 

  48. Gibson RS. Principles of Nutritional Assessment. Second Edi: Oxford University Press, New York; 2005.

    Google Scholar 

  49. Ferritin (Blood) - Health Encyclopedia - University of Rochester Medical Center. 2021. https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=ferritin_blood. Accessed 22 Jul 2021

  50. Iron and Total Iron-Binding Capacity - Health Encyclopedia - University of Rochester Medical Center. https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=iron_total_iron_binding_capacity. Accessed 22 Jul 2021

  51. Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: A HuGE review. Am J Epidemiol. 2001;154:193–206.

    Article  CAS  Google Scholar 

  52. Wessling-Resnick M. Excess iron: considerations related to development and early growth. Am J Clin Nutr. 2017;106:1600S-1605S.

    Article  Google Scholar 

  53. Dórea JG. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ Res. 2019;177:108641.

    Article  Google Scholar 

  54. Neal AP, Guilarte TR. Mechanisms of lead and manganese neurotoxicity. Toxicol Res (Camb). 2013;2:99–114.

    Article  CAS  Google Scholar 

  55. Balasundaram P, Avulakunta ID. Bayley scales of infant and toddler development. Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  56. Johnson S, Moore T, Marlow N. Using the Bayley-II to assess neurodevelopmental delay: which cut-off should be used? Pediatr Res. 2014;75:670–4.

    Article  Google Scholar 

  57. Bos AF. Bayley-II or Bayley-III: what do the scores tell us? Dev Med Child Neurol. 2013;55:978–9.

    Article  Google Scholar 

  58. Wasserman G, Graziano JH, Factor-Litvak P, et al. Independent effects of lead exposure and iron deficiency anemia on developmental outcome at age 2 years. J Pediatr. 1992;121:695–703.

    Article  CAS  Google Scholar 

  59. Wolf A, Jimenez E, Lozoff B. No evidence of developmental III effects of low-level lead exposure in a developing country. J Dev Behav Pediatr. 1994;15:224–31.

    Article  CAS  Google Scholar 

  60. Ruff HA, Morri I, Markowitz E, Bijur PE, Rosen1 JF,. Relationships among blood lead levels, iron deficiency, and cognitive development in two-year-old children. Environ Health Perspect. 1996;104:180–5.

  61. Shah-Kulkarni S, Ha M, Kim B-M, et al. Neurodevelopment in early childhood affected by prenatal lead exposure and iron intake. Medicine (Baltimore). 2016;95:e2508.

    Article  CAS  Google Scholar 

  62. Freeman S. Wechsler Preschool and Primary Scale of Intelligence. New York, NY, New York: Springer; 2013.

    Google Scholar 

  63. Gardner JM, Walker SP, Chang SM, Vutchkov M, Lalor GC. Undernutrition and elevated blood lead levels: effects on psychomotor development among Jamaican children. Public Health Nutr. 1998;1:177–9.

    Article  CAS  Google Scholar 

  64. Roy A, Ettinger AS, Hu H, Bellinger D, Schwartz J, Modali R, Wright RO, Palaniappan K, Balakrishnan K. Effect modification by transferrin C2 polymorphism on lead exposure, hemoglobin levels, and IQ. Neurotoxicology. 2013;38:17–22.

    Article  CAS  Google Scholar 

  65. Tso WWY, Wong VCN, Xia X, et al. The Griffiths Development Scales-Chinese (GDS-C): a cross-cultural comparison of developmental trajectories between Chinese and British children. Child Care Health Dev. 2018;44:378–83.

    Article  CAS  Google Scholar 

  66. Roopesh BN. Binet kamat test of intelligence: administration, scoring and interpretation-an in-depth appraisal. Indian J Ment Heal. 2020;7:180–201.

    Article  Google Scholar 

  67. Kordas K, Casavantes KM, Mendoza C, Lopez P, Ronquillo D, Rosado JL, Vargas GG, Stoltzfus RJ. The association between lead and micronutrient status, and children’s sleep, classroom behavior, and activity. Arch Environ Occup Heal. 2007;62:105–12.

    Article  CAS  Google Scholar 

  68. Evans AS, Preston A. Conners Rating Scales. New York, NY, New York: Springer; 2011.

    Book  Google Scholar 

  69. Faries DE, Yalcin I, Harder D, Heiligenstein JH. Validation of the ADHD rating scale as a clirlician administered and scored instrument. J Atten Disord. 2016;5:107–15.

    Article  Google Scholar 

  70. Nigg JT, Elmore AL, Natarajan N, Friderici KH, Nikolas MA. Variation in an iron metabolism gene moderates the association between blood lead levels and attention-deficit/hyperactivity disorder in children. Psychol Sci. 2016;27:257–69.

    Article  Google Scholar 

  71. Jeong KS, Park HH, Ha E, et al. Evidence that cognitive deficit in children is associated not only with iron deficiency, but also with blood lead concentration: A preliminary study. J Trace Elem Med Biol. 2015;29:336–41.

    Article  CAS  Google Scholar 

  72. Hegazy AA, Zaher MM, Abd El-Hafez MA, Morsy AA, Saleh RA. Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Res Notes. 2010;3:133.

    Article  Google Scholar 

  73. Arshad S, Arif A, Wattoo JI. Response of iron deficiency markers to blood lead levels and synergistic outcomes at prenatal stage. Dose Response. 2022;20:1–7.

    Article  Google Scholar 

  74. Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, Haynes EN, Bowman AB. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem. 2020;295:6312–6329. A recent review discussing the complex role of Mn, both an essential nutrient and neurotoxicant, on child cognitive development.

  75. Gunier RB, Arora M, Jerrett M, et al. Manganese in teeth and neurodevelopment in young Mexican-American children. Environ Res. 2015;142:688–95.

    Article  CAS  Google Scholar 

  76. Chung SE, Cheong HK, Ha EH, Kim BN, Ha M, Kim Y, Hong YC, Park H, Oh SY. Maternal blood manganese and early neurodevelopment: The mothers and children’s environmental health (MOCEH) study. Environ Health Perspect. 2015;123:717–22.

    Article  CAS  Google Scholar 

  77. Haynes EN, Sucharew H, Kuhnell P, et al. Manganese exposure and neurocognitive outcomes in rural school-age children: The communities actively researching exposure study (Ohio, USA). Environ Health Perspect. 2015;123:1066–71.

    Article  CAS  Google Scholar 

  78. Bhang SY, Cho SC, Kim JW, Hong YC, Shin MS, Yoo HJ, Cho IH, Kim Y, Kim BN. Relationship between blood manganese levels and children’s attention, cognition, behavior, and academic performance-a nationwide cross-sectional study. Environ Res. 2013;126:9–16.

    Article  CAS  Google Scholar 

  79. Claus Henn B, Ettinger AS, Schwartz J, et al. Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology. 2010;21:433–9.

    Article  Google Scholar 

  80. Kreutzer J, DeLuca J, Caplan B. McCarthy Scales of Children’s Abilities. New York, NY, New York: Springer; 2011.

    Google Scholar 

  81. Kupsco A, Estrada-Gutierrez G, Cantoral A, et al. Modification of the effects of prenatal manganese exposure on child neurodevelopment by maternal anemia and iron deficiency. Pediatr Res 2020;88:325–333. The most recent epidemiological study we found that assessed the modifying role of Fe on associations between Mn and neurodevelopment.

  82. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014;88:1929–38.

    Article  CAS  Google Scholar 

  83. Gaetke LM, Chow CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003;189:147–63.

    Article  CAS  Google Scholar 

  84. Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85:614S-620S.

    CAS  Google Scholar 

  85. Bauer JA, Devick KL, Bobb JF, et al. Associations of a metal mixture measured in multiple biomarkers with IQ: evidence from Italian adolescents living near ferroalloy industry. Environ Health Perspect. 2020;128:97002.

    Article  Google Scholar 

  86. Amorós R, Murcia M, González L, et al. Maternal copper status and neuropsychological development in infants and preschool children. Int J Hyg Environ Health. 2019;222:503–512. The only observational study we identified that examined the modifying role of the essential nutrient Cu.

  87. Liu J, Hanlon A, Ma C, Zhao SR, Cao S, Compher C. Low blood zinc, iron, and other sociodemographic factors associated with behavior problems in preschoolers. Nutrients. 2014;6:530–45.

    Article  Google Scholar 

  88. Maust D, Cristancho M, Gray L, Rushing S, Tjoa C, Thase ME. Psychiatric rating scales. Handb Clin Neurol. 2012;106:227–37.

    Article  Google Scholar 

  89. Hubbs-Tait L, Kennedy TS, Droke EA, Belanger DM, Parker JR. Zinc, Iron, and Lead: Relations to Head Start Children’s Cognitive Scores and Teachers’ Ratings of Behavior. J Am Diet Assoc. 2007;107:128–33.

    Article  CAS  Google Scholar 

  90. Burbacher TM, Ponce R, Grant KS The role of Methylmercury exposure in neurodevelopmental and neurodegenerative disorders. In: Environ Factors Neurodev Neurodegener Disord Elsevier Inc., 2015, pp 107–137.

  91. Lynch ML, Huang LS, Cox C, et al. Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study. Environ Res. 2011;111:75–80.

    Article  CAS  Google Scholar 

  92. Rodríguez-Barranco M, Lacasaña M, Aguilar-Garduño C, Alguacil J, Gil F, González-Alzaga B, Rojas-García A. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ. 2013;454–455:562–77.

    Article  Google Scholar 

  93. Soler-Blasco R, Murcia M, Lozano M, et al. Prenatal arsenic exposure, arsenic methylation efficiency, and neuropsychological development among preschool children in a Spanish birth cohort. Environ Res. 2022;207:112208. The only study to assess Fe status modification of associations of As with neurodevelopment.

  94. Merced-Nieves FM, Arora M, Wright RO, Curtin P. Metal mixtures and neurodevelopment: recent findings and emerging principles. Curr Opin Toxicol. 2021;26:28–32.

    Article  CAS  Google Scholar 

  95. Keil AP, Buckley JP, O’Brien KM, Ferguson KK, Zhao S, White AJ. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect. 2020;128:047004.

    Article  Google Scholar 

  96. Tung PW, Burt A, Karagas M, Jackson BP, Punshon T, Lester B, Marsit CJ.Prenatal exposure to metal mixtures and newborn neurobehavior in the Rhode Island Child Health Study. Environ Epidemiol. 2022;6:E194. One of only two studies examining Fe as a component of a metal mixture in studies of neurodevelopment.

  97. Tronick E, Lester BM. Grandchild of the NBAS: the NICU Network Neurobehavioral Scale (NNNS) A Review of the Research Using the NNNS. J Child Adolesc Psychiatr Nurs. 2013;26:193–203.

    Article  Google Scholar 

  98. Wei L, Huang H, Chen X, et al. Umbilical cord serum elementomics of 52 trace elements and early childhood neurodevelopment: Evidence from a prospective birth cohort in rural Bangladesh. Environ Int. 2022;166:107370. One of only two studies examining Fe as a component of a metal mixture in studies of neurodevelopment.

  99. Koury MJ, Ponka P. New insights into erythropoiesis: The roles of folate, vitamin B 12, and iron. Annu Rev Nutr. 2004;24:105–31.

    Article  CAS  Google Scholar 

  100. Black MM, Baqui AH, Zaman K, Ake Persson L, El Arifeen S, Le K, McNary SW, Parveen M, Hamadani JD, Black RE. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr. 2004;80:903–10.

    Article  CAS  Google Scholar 

  101. Siegel EH, Kordas K, Stoltzfus RJ, Katz J, Khatry SK, LeClerq SC, Tielsch JM. Inconsistent effects of iron-folic acid and/or zinc supplementation on the cognitive development of infants. J Heal Popul Nutr. 2011;29:593–604.

    Google Scholar 

  102. Fagan JF, Professor L The Fagan test of infant intelligence manual.

  103. Cuevas K, Bell MA. Developmental progression of looking and reaching performance on the a-not-b task. Dev Psychol. 2010;46:1363–71.

    Article  Google Scholar 

  104. Kaufman AS, Lichtenberger EO. Intellectual Assessment. Elsevier; 1998.

    Google Scholar 

  105. Leavitt VM, Weber E. Raven’s Progressive Matrices. Encycl Clin Neuropsychol. 2017. https://doi.org/10.1007/978-3-319-56782-2_1069-2.

    Article  Google Scholar 

  106. Pongcharoen T, DiGirolamo AM, Ramakrishnan U, Winichagoon P, Flores R, Martorell R. Long-term effects of iron and zinc supplementation during infancy on cognitive function at 9 y of age in northeast Thai children: a follow-up study. Am J Clin Nutr. 2011;93:636–43.

    Article  CAS  Google Scholar 

  107. Rico JA, Kordas K, López P, Rosado JL, Vargas GG, Ronquillo D, Stoltzfus RJ. Efficacy of iron and/or zinc supplementation on cognitive performance of lead-exposed Mexican schoolchildren: A randomized, placebo-controlled trial. Pediatrics. 2006;117:e518–27.

    Article  Google Scholar 

  108. Kordas K, Stoltzfus RJ, López P, Rico JA, Rosado JL. Iron and zinc supplementation does not improve parent or teacher ratings of behavior in first grade Mexican children exposed to lead. J Pediatr. 2005;147:632–9.

    Article  CAS  Google Scholar 

  109. Caulfield LE, Putnick DL, Zavaleta N, Lazarte F, Albornoz C, Chen P, DiPietro JA, Bornstein MH. Maternal gestational zinc supplementation does not influence multiple aspects of child development at 54 mo of age in Peru. Am J Clin Nutr. 2010;92:130–6.

    Article  CAS  Google Scholar 

  110. Christian P, Murray-Kolb LE, Khatry SK, Katz J, Schaefer BA, Cole PM, LeClerq SC, Tielsch JM. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA. 2010;304:2716–23.

    Article  CAS  Google Scholar 

  111. Christian P, Morgan ME, Murray-Kolb L, LeClerq SC, Khatry SK, Schaefer B, Cole PM, Katz J, Tielsch JM. Preschool iron-folic acid and zinc supplementation in children exposed to iron-folic acid in utero confers no added cognitive benefit in early school-age. J Nutr. 2011;141:2042–8.

    Article  CAS  Google Scholar 

  112. Murray-Kolb LE, Khatry SK, Katz J, et al. Preschool micronutrient supplementation effects on intellectual and motor function in school-aged Nepalese children. Arch Pediatr Adolesc Med. 2012;166:404–10.

    Article  Google Scholar 

  113. Nelson BR, Morillas-Brown A, Boyd G. Universal Nonverbal Intelligence Test. Boston: Springer; 2011.

    Book  Google Scholar 

  114. Wambach D, Lamar M, Swenson R, Penney DL, Kaplan E, Libon DJ. Digit Span. New York: Springer; 2011.

    Book  Google Scholar 

  115. Scarpina F, Tagini S. The Stroop Color and Word Test. Front Psychol. 2017;8:557.

    Article  Google Scholar 

  116. Meule A. Reporting and interpreting task performance in Go/No-Go affective shifting tasks. Front Psychol. 2017;8:701.

    Article  Google Scholar 

  117. Surkan PJ, Siegel EH, Patel SA, Katz J, Khatry SK, Stoltzfus RJ, LeClerq SC, Tielsch JM. Effects of zinc and iron supplementation fail to improve motor and language milestone scores of infants and toddlers. Nutrition. 2013;29:542–8.

    Article  CAS  Google Scholar 

  118. Colombo J, Zavaleta N, Kannass KN, Lazarte F, Albornoz C, Kapa LL, Caulfield LE. Zinc supplementation sustained normative neurodevelopment in a randomized, controlled trial of Peruvian infants aged 6–18 months. J Nutr. 2014;144:1298–305.

    Article  CAS  Google Scholar 

  119. Santiago González DA, Cheli VT, Wan R, Paez PM. Iron metabolism in the peripheral nervous system: the role of DMT1, ferritin, and transferrin receptor in Schwann cell maturation and myelination. J Neurosci. 2019;39:9940–53.

    Article  Google Scholar 

  120. Larsen B, Bourque J, Moore XTM, et al. Longitudinal development of brain iron is linked to cognition in youth. J Neurosci. 2020;40:1810–8.

    Article  CAS  Google Scholar 

  121. Salvador GA, Uranga RM, Giusto NM. Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis. 2011. https://doi.org/10.4061/2011/720658.

    Article  Google Scholar 

  122. Sammallahti S, Tiemeier H, Reiss IKM, Muckenthaler MU, El Marroun H, Vermeulen M. Maternal early-pregnancy ferritin and offspring neurodevelopment: A prospective cohort study from gestation to school age. Paediatr Perinat Epidemiol. 2022;36:425–34.

    Article  Google Scholar 

  123. Takeuchi H, Taki Y, Nouchi R, et al. Association of iron levels in hair with brain structures and functions in young adults. J Trace Elem Med Biol. 2020. https://doi.org/10.1016/J.JTEMB.2019.126436.

    Article  Google Scholar 

  124. Carlson ES, Tkac I, Magid R, O’Connor MB, Andrews NC, Schallert T, Gunshin H, Georgieff MK, Petryk A. Iron Is Essential for Neuron Development and Memory Function in Mouse Hippocampus. J Nutr. 2009;139:672–9.

    Article  CAS  Google Scholar 

  125. Bird CM, Burgess N. The hippocampus and memory: Insights from spatial processing. Nat Rev Neurosci. 2008;9:182–94.

    Article  CAS  Google Scholar 

  126. Aly M, Turk-Browne NB. Attention promotes episodic encoding by stabilizing hippocampal representations. Proc Natl Acad Sci U S A. 2016;113:E420–9.

    Article  CAS  Google Scholar 

  127. Hoogman M, Bralten J, Hibar DP, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. The Lancet Psychiatry. 2017;4:310–9.

    Article  Google Scholar 

  128. Lezak M, Howieson D, Bigler E, Tranel D. Neuropsychological Assessment. Fifth: Oxford University Press, New York; 2012.

    Google Scholar 

  129. Ghazizadeh A, Hong S, Hikosaka O. Prefrontal cortex represents long-term memory of object values for months. Curr Biol. 2018;28:2206-2217.e5.

    Article  CAS  Google Scholar 

  130. Blumenfeld R, Ranganath C. Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist. 2007;13:280–91.

    Article  Google Scholar 

  131. Lozoff B. Early iron deficiency has brain and behavior effects consistent with dopaminergic dysfunction. J Nutr. 2011;141:740S.

    Article  CAS  Google Scholar 

  132. Guilarte TR. Manganese neurotoxicity: New perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci. 2013. https://doi.org/10.3389/fnagi.2013.00023.

    Article  Google Scholar 

  133. Cecil KM, Brubaker CJ, Adler CM, et al. Decreased brain volume in adults with childhood lead exposure. PLoS Med. 2008;5:0741–9.

    Article  CAS  Google Scholar 

  134. Cordova FM, Aguiar AS, Peres TV, et al. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol. 2013;87:1231–44.

    Article  CAS  Google Scholar 

  135. Uytun MC. Development period of prefrontal cortex. Prefrontal Cortex. 2018. https://doi.org/10.5772/INTECHOPEN.78697.

    Article  Google Scholar 

  136. Guerra M. Neural stem cells: Are they the hope of a better life for patients with fetal-onset hydrocephalus? Fluids Barriers CNS. 2014. https://doi.org/10.1186/2045-8118-11-7.

    Article  Google Scholar 

  137. Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, Sandhu R, Sharma S. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449.

    Google Scholar 

  138. Lenroot RK, Giedd JN. Sex differences in the adolescent brain. Brain Cogn. 2010;72:46.

    Article  Google Scholar 

  139. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. Annu Rev Nutr. 2015;35:71.

    Article  CAS  Google Scholar 

  140. Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain. 2003;126:5–19.

    Article  Google Scholar 

  141. Ap N, Pf W, TR G. Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology. 2011;32:281–9.

  142. Hu F, Xu L, Liu Z-H, Ge M-M, Ruan D-Y, Wang H-L. Developmental lead exposure alters synaptogenesis through inhibiting Canonical Wnt pathway In vivo and in vitro. PLoS One. 2014;9:e101894.

  143. Vlasova RM, Wang Q, Willette A, Styner MA, Lubach GR, Kling PJ, Georgieff MK, Rao RB, Coe CL. Infantile iron deficiency affects brain development in monkeys even after treatment of anemia. Front Hum Neurosci. 2021;15:60.

    Article  Google Scholar 

  144. Georgieff MK. The role of iron in neurodevelopment: Fetal iron deficiency and the developing hippocampus. Biochem Soc Trans. 2008;36:1267–71.

    Article  CAS  Google Scholar 

  145. Rădulescu A, Lundgren S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep. 2019;9:1–27.

    Article  Google Scholar 

  146. Scheers N. Regulatory effects of Cu, Zn, and Ca on Fe absorption: The intricate play between nutrient transporters. Nutrients. 2013;5:957–70.

    Article  CAS  Google Scholar 

  147. Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and zinc homeostasis and interactions: Does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients. 2019. https://doi.org/10.3390/nu11081885.

    Article  Google Scholar 

  148. Choosing Wisely: Avoid using hemoglobin to evaluate patients for iron deficiency in susceptible populations. Instead, use ferritin. https://www.aafp.org/afp/recommendations/viewRecommendation.htm?recommendationId=432. Accessed 27 Aug 2021

  149. What is the role of serum iron and ferritin testing in the diagnosis of iron deficiency anemia? https://www.medscape.com/answers/202333-153142/what-is-the-role-of-serum-iron-and-ferritin-testing-in-the-diagnosis-of-iron-deficiency-anemia. Accessed 22 Jul 2021.

  150. Angelova MG, Petkova-Marinova TV, Pogorielov MV, Loboda AN, Nedkova-Kolarova VN, Bozhinova AN. Trace element status (iron, zinc, copper, chromium, cobalt, and nickel) in iron-deficiency anaemia of children under 3 years. Anemia. 2014. https://doi.org/10.1155/2014/718089.

    Article  Google Scholar 

  151. Li Y, Cha C, Lv XJ, Liu J, He J, Pang Q, Meng L, Kuang H, Fan R. Association between 10 urinary heavy metal exposure and attention deficit hyperactivity disorder for children. Environ Sci Pollut Res. 2020;27:31233–42.

    Article  CAS  Google Scholar 

  152. Caparros-Gonzalez RA, Giménez-Asensio MJ, González-Alzaga B, et al. Childhood chromium exposure and neuropsychological development in children living in two polluted areas in southern Spain. Environ Pollut. 2019;252:1550–60.

    Article  CAS  Google Scholar 

  153. Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18:137.

    Article  Google Scholar 

  154. Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. Am Psychol Assoc. 2010;15:309–34.

    Google Scholar 

  155. Rai NK, Ashok A, Rai A, Tripathi S, Nagar GK, Mitra K, Bandyopadhyay S. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina. Toxicol Appl Pharmacol. 2013;273:242–58.

    Article  CAS  Google Scholar 

  156. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: Synergistic Action of Metal Mixture in Glial and Neuronal Functions. Toxicol Sci. 2010;118:586–601.

    Article  CAS  Google Scholar 

  157. Zhou F, Xie J, Zhang S, et al. Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway. Ecotoxicol Environ Saf. 2018;163:674–84.

    Article  CAS  Google Scholar 

  158. Mejía JJ, Díaz-Barriga F, Calderón J, Ríos C, Jiménez-Capdeville ME. Effects of lead-arsenic combined exposure on central monoaminergic systems. Neurotoxicol Teratol. 1997;19:489–97.

    Article  Google Scholar 

  159. Karri V, Schuhmacher M, Kumar V. Review or Mini-review Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol. 2016;48:203–13.

    Article  CAS  Google Scholar 

  160. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. J F BOBB OTHERS. 2015;16:493–508.

    Google Scholar 

  161. Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Heal A Glob Access Sci Source. 2018;17:67.

    Google Scholar 

  162. Devick KL, Bobb JF, Mazumdar M, Claus Henn B, Bellinger DC, Christiani DC, Wright RO, Williams PL, Coull BA, Valeri L. Bayesian kernel machine regression-causal mediation analysis. Stat Med. 2022;41:860–76.

    Article  Google Scholar 

  163. Goldenberg RL, Tamura T, DuBard M, Johnston KE, Copper RL, Neggers Y. Plasma ferritin and pregnancy outcome. Am J Obstet Gynecol. 1996;175:1356–9.

    Article  CAS  Google Scholar 

  164. Tamura T, Goldenberg RL, Hou J, Johnston KE, Cliver SP, Ramey SL, Nelson KG. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140:165–70.

    Article  CAS  Google Scholar 

  165. Galaris D, Barbouti A, Pantopoulos K Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta - Mol Cell Res. 2019;1866:118535. A recent review discussing the cellular processes of Fe homeostatisis and potential mechanisms of toxicity.

  166. Borchard S, Bork F, Rieder T, et al. The exceptional sensitivity of brain mitochondria to copper. Toxicol Vitr. 2018;51:11–22.

    Article  CAS  Google Scholar 

  167. Barkur RR. Bairy LK. Assessment of oxidative stress in hippocampus, cerebellum and frontal cortex in rat pups exposed to lead (Pb) during specific periods of initial brain development. Biol Trace Elem Res. 2015;1642(164):212–8.

    Article  Google Scholar 

  168. Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics. 2014;6:921–31.

    Article  CAS  Google Scholar 

  169. Walter PB, Knutson MD, Paler-Martinez A, Lee S, Xu Y, Viteri FE, Ames BN. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci. 2002;99:2264–9.

    Article  CAS  Google Scholar 

  170. Kim J, Wessling-Resnick M. Iron and mechanisms of emotional behavior. J Nutr Biochem. 2014;25:1101–7.

    Article  CAS  Google Scholar 

  171. Soares ATG, Silva A de C, Tinkov AA, et al. The impact of manganese on neurotransmitter systems. J Trace Elem Med Biol. 2020;61:126554. A recent review describing potential mechanisms of metal neurotoxicity.

  172. Peters C, Muñoz B, Sepúlveda F, Urrutia J, Quiroz M, Luza S, De Ferrari G, Aguayo L, Opazo C. Biphasic effects of copper on neurotransmission in rat hippocampal neurons. J Neurochem. 2011;119:78–88.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by National Institute of Environmental Health Sciences (T32-ES014562 and 1F31ES033507-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Schildroth.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have reviewed the manuscript and consent to its submission to the journal.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metals and Health

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schildroth, S., Kordas, K., Bauer, J.A. et al. Environmental Metal Exposure, Neurodevelopment, and the Role of Iron Status: a Review. Curr Envir Health Rpt 9, 758–787 (2022). https://doi.org/10.1007/s40572-022-00378-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-022-00378-0

Keywords

Navigation