Skip to main content
Log in

Mechanism of Gene-Environment Interactions Driving Glial Activation in Parkinson’s Diseases

  • Mechanisms of Toxicity (JR Richardson, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Parkinson’s disease (PD) is the most prevalent motor disorder and is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Though the pathology of PD is well established, the cause of this neuronal loss is not well understood. Approximately 90% of PD cases are sporadic, and the environment plays a significant role in disease pathogenesis. The etiology of PD is highly complex, with neuroinflammation being one of the most critical factors implicated in PD. However, the signaling mechanisms underlying neuroinflammation and its interaction with environmental factors are unclear.

Recent Findings

Astroglia and microglia are the two principal cells that play an essential role in maintaining neuronal health in many ways, including through immunological means. Exposure to environmental stressors from various sources affects these glial cells leading to chronic and sustained inflammation. Recent epidemiological studies have identified an interaction among environmental factors and glial genes in Parkinson’s disease. Mechanistic studies have shown that exposure to pesticides like rotenone and paraquat, neurotoxic metals like manganese and lead, and even diesel exhaust fumes induce glial activation by regulating various key inflammatory pathways, including the inflammasomes, NOX pathways, and others.

Summary

This review aims to discuss the recent advances in understanding the mechanism of glial induction in response to environmental stressors and discuss the potential role of gene-environment interaction in driving glial activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rokad D, Ghaisas S, Harischandra DS, Jin H, Anantharam V, Kanthasamy A, et al. Role of neurotoxicants and traumatic brain injury in alpha-synuclein protein misfolding and aggregation. Brain Res Bull. 2016;133:60–70. https://doi.org/10.1016/j.brainresbull.2016.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harischandra DS, Ghaisas S, Rokad D, Zamanian M, Jin H, Anantharam V, et al. Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson’s disease: Relevance to alpha-synuclein misfolding in metal neurotoxicity. Neurotoxicology. 2017;64:267–77. https://doi.org/10.1016/j.neuro.2017.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, et al. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology. 2017;64:204–18. https://doi.org/10.1016/j.neuro.2017.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lawana V, Singh N, Sarkar S, Charli A, Jin H, Anantharam V, et al. Involvement of c-Abl kinase in microglial activation of NLRP3 inflammasome and impairment in autolysosomal system. J Neuroimmune Pharmacol. 2017;12:624–60. https://doi.org/10.1007/s11481-017-9746-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. https://doi.org/10.1038/nrn2038.

    Article  CAS  PubMed  Google Scholar 

  6. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65. https://doi.org/10.1038/ni.1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8. https://doi.org/10.1038/nature11729.

    Article  CAS  PubMed  Google Scholar 

  8. Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, et al. Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in MitoPark transgenic mice. Antioxid Redox Signal. 2017;27:1048–66. https://doi.org/10.1089/ars.2016.6905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panicker N, Saminathan H, Jin H, Neal M, Harischandra DS, Gordon R, et al. fyn kinase regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson’s disease. J Neurosci. 2015;35(27):10058–77. https://doi.org/10.1523/JNEUROSCI.0302-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, et al. Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinsons Dis. 2017;3:30. https://doi.org/10.1038/s41531-017-0032-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, et al. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science. 2000;287(5450):138–42.

    Article  CAS  Google Scholar 

  12. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene. 2001;269(1-2):131–40.

    Article  CAS  Google Scholar 

  14. Geiszt M, Kopp JB, Varnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A. 2000;97(14):8010–4. https://doi.org/10.1073/pnas.130135897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, et al. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 2001;276(40):37594–601. https://doi.org/10.1074/jbc.M103034200.

    Article  CAS  PubMed  Google Scholar 

  16. Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol. 2001;154(4):879–91. https://doi.org/10.1083/jcb.200103132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, et al. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem. 2008;283(12):7983–93. https://doi.org/10.1074/jbc.M708281200.

    Article  CAS  PubMed  Google Scholar 

  18. Belarbi K, Cuvelier E, Destee A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson’s disease: a systematic review. Mol Neurodegener. 2017;12(1):84. https://doi.org/10.1186/s13024-017-0225-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2003;100(10):6145–50. https://doi.org/10.1073/pnas.0937239100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, et al. Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J Neuroimmune Pharmacol. 2016;11(2):259–78. https://doi.org/10.1007/s11481-016-9650-4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zawada WM, Mrak RE, Biedermann J, Palmer QD, Gentleman SM, Aboud O, et al. Loss of angiotensin II receptor expression in dopamine neurons in Parkinson’s disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation. Acta Neuropathol Commun. 2015;3:9. https://doi.org/10.1186/s40478-015-0189-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol. 2017;102:10–21. https://doi.org/10.1016/j.yjmcc.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  23. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. https://doi.org/10.1101/cshperspect.a001651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Christian F, Smith EL, Carmody RJ. The regulation of NF-kappaB subunits by phosphorylation. Cells. 2016;5(1). https://doi.org/10.3390/cells5010012.

  25. Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci. 2015;8:77. https://doi.org/10.3389/fnmol.2015.00077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D, et al. Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J. 2004;23(21):4202–10. https://doi.org/10.1038/sj.emboj.7600391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao S, Zhang X, Edwards JP, Mosser DM. NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem. 2006;281(36):26041–50. https://doi.org/10.1074/jbc.M602222200.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez EM, Young AL, Patankar YR, Berwin BL, Wang L, von Herrmann KM, et al. Editor’s highlight: Nlrp3 is required for inflammatory changes and nigral cell loss resulting from chronic intragastric rotenone exposure in mice. Toxicol Sci. 2017;159(1):64–75. https://doi.org/10.1093/toxsci/kfx117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sarkar S, Nguyen HM, Malovic E, Luo J, Langley M, Palanisamy BN, et al. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease. J Clin Invest. 2020;130(8):4195–212. https://doi.org/10.1172/JCI136174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21. https://doi.org/10.1016/j.tibs.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38(6):1142–53. https://doi.org/10.1016/j.immuni.2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanneganti TD, Lamkanfi M. K(+) drops tilt the NLRP3 inflammasome. Immunity. 2013;38(6):1085–8. https://doi.org/10.1016/j.immuni.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  33. Song H, Zhao C, Yu Z, Li Q, Yan R, Qin Y, et al. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun. 2020;11(1):6042. https://doi.org/10.1038/s41467-020-19939-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freeman LC, Ting JP. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136(Suppl 1):29–38. https://doi.org/10.1111/jnc.13217.

    Article  CAS  PubMed  Google Scholar 

  35. Charli A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. Neurotoxicology. 2016;53:302–13. https://doi.org/10.1016/j.neuro.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  36. Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. J Neurochem. 2007;100(6):1469–79. https://doi.org/10.1111/j.1471-4159.2006.04333.x.

    Article  CAS  PubMed  Google Scholar 

  37. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis. 2009;34(2):279–90.

    Article  CAS  Google Scholar 

  38. Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol Pharm Bull. 2011;34(1):92–6.

    Article  CAS  Google Scholar 

  39. Gao HM, Liu B, Hong JS. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci. 2003;23(15):6181–7.

    Article  CAS  Google Scholar 

  40. Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, et al. Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci. 2007;27(12):3328–37. https://doi.org/10.1523/JNEUROSCI.5321-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao F, Chen D, Hu Q, Wang G. Rotenone directly induces BV2 cell activation via the p38 MAPK pathway. PLoS One. 2013;8(8):e72046. https://doi.org/10.1371/journal.pone.0072046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou H, Zhang F, Chen SH, Zhang D, Wilson B, Hong JS, et al. Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radic Biol Med. 2012;52(2):303–13. https://doi.org/10.1016/j.freeradbiomed.2011.10.488.

    Article  CAS  PubMed  Google Scholar 

  43. • Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5. https://doi.org/10.1038/nature09663.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med. 2008;12(5A):1559–70. https://doi.org/10.1111/j.1582-4934.2007.00144.x.

    Article  CAS  PubMed  Google Scholar 

  45. Liang Y, Jing X, Zeng Z, Bi W, Chen Y, Wu X, et al. Rifampicin attenuates rotenone-induced inflammation via suppressing NLRP3 inflammasome activation in microglia. Brain Res. 1622;2015:43–50. https://doi.org/10.1016/j.brainres.2015.06.008.

    Article  CAS  Google Scholar 

  46. Hertzman C, Wiens M, Bowering D, Snow B, Calne D. Parkinson’s disease: a case-control study of occupational and environmental risk factors. Am J Ind Med. 1990;17(3):349–55.

    Article  CAS  Google Scholar 

  47. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169(8):919–26. https://doi.org/10.1093/aje/kwp006.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, et al. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis. 2005;20(2):360–71. https://doi.org/10.1016/j.nbd.2005.03.018.

    Article  CAS  PubMed  Google Scholar 

  49. Bonneh-Barkay D, Reaney SH, Langston WJ, Di Monte DA. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res Mol Brain Res. 2005;134(1):52–6. https://doi.org/10.1016/j.molbrainres.2004.11.005.

    Article  CAS  PubMed  Google Scholar 

  50. Wu XF, Block ML, Zhang W, Qin L, Wilson B, Zhang WQ, et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid Redox Signal. 2005;7(5-6):654–61. https://doi.org/10.1089/ars.2005.7.654.

    Article  CAS  PubMed  Google Scholar 

  51. Miller RL, Sun GY, Sun AY. Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res. 2007;1167:129–39. https://doi.org/10.1016/j.brainres.2007.06.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem. 2007;282(19):14186–93. https://doi.org/10.1074/jbc.M700827200.

    Article  CAS  PubMed  Google Scholar 

  53. Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol. 2010;77(4):621–32. https://doi.org/10.1124/mol.109.062174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mao H, Liu B. Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin. Neuroreport. 2008;19(13):1317–20. https://doi.org/10.1097/WNR.0b013e32830b3677.

    Article  CAS  PubMed  Google Scholar 

  55. Mao H, Fang X, Floyd KM, Polcz JE, Zhang P, Liu B. Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin. Brain Res. 2007;1186:267–74. https://doi.org/10.1016/j.brainres.2007.10.020.

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Lein PJ, Ford GD, Liu C, Stovall KC, White TE, et al. Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury. J Neuroinflammation. 2015;12:64. https://doi.org/10.1186/s12974-015-0283-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Archibald FS, Tyree C. Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys. 1987;256(2):638–50.

    Article  CAS  Google Scholar 

  58. Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-Induced Parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015;12(7):7519–40. https://doi.org/10.3390/ijerph120707519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karki P, Smith K, Johnson J Jr, Aschner M, Lee E. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: Putative mechanism for manganese-induced neurotoxicity. Neurochem Int. 2015;88:53–9. https://doi.org/10.1016/j.neuint.2014.08.002.

    Article  CAS  PubMed  Google Scholar 

  60. Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, Aschner JL, et al. Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci. 2007;98(1):198–205. https://doi.org/10.1093/toxsci/kfm095.

    Article  CAS  PubMed  Google Scholar 

  61. Sidoryk-Wegrzynowicz M, Aschner M. Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacol Toxicol. 2013;14:23. https://doi.org/10.1186/2050-6511-14-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mercadante CJ, Prajapati M, Conboy HL, Dash ME, Herrera C, Pettiglio MA, et al. Manganese transporter Slc30a10 controls physiological manganese excretion and toxicity. J Clin Invest. 2019;129(12):5442–61. https://doi.org/10.1172/JCI129710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Katz N, Rader DJ. Manganese homeostasis: from rare single-gene disorders to complex phenotypes and diseases. J Clin Invest. 2019;129(12):5082–5. https://doi.org/10.1172/JCI133120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gonzalez LE, Juknat AA, Venosa AJ, Verrengia N, Kotler ML. Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family. Neurochem Int. 2008;53(6-8):408–15. https://doi.org/10.1016/j.neuint.2008.09.008.

    Article  CAS  PubMed  Google Scholar 

  65. Aschner M, Gannon M, Kimelberg HK. Manganese uptake and efflux in cultured rat astrocytes. J Neurochem. 1992;58(2):730–5.

    Article  CAS  Google Scholar 

  66. Gavin CE, Gunter KK, Gunter TE. Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J. 1990;266(2):329–34.

    Article  CAS  Google Scholar 

  67. Tjalkens RB, Zoran MJ, Mohl B, Barhoumi R. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics. Brain Res. 2006;1113(1):210–9. https://doi.org/10.1016/j.brainres.2006.07.053.

    Article  CAS  PubMed  Google Scholar 

  68. Streifel KM, Miller J, Mouneimne R, Tjalkens RB. Manganese inhibits ATP-induced calcium entry through the transient receptor potential channel TRPC3 in astrocytes. Neurotoxicology. 2013;34:160–6. https://doi.org/10.1016/j.neuro.2012.10.014.

    Article  CAS  PubMed  Google Scholar 

  69. Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med. 2013;62:65–75. https://doi.org/10.1016/j.freeradbiomed.2013.01.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Karki P, Webb A, Smith K, Johnson J Jr, Lee K, Son DS, et al. Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol. 2014;34(7):1280–9. https://doi.org/10.1128/MCB.01176-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang JY, Liu LZ. Manganese potentiates nitric oxide production by microglia. Brain Res Mol Brain Res. 1999;68(1-2):22–8.

    Article  CAS  Google Scholar 

  72. Dodd CA, Filipov NM. Manganese potentiates LPS-induced heme-oxygenase 1 in microglia but not dopaminergic cells: role in controlling microglial hydrogen peroxide and inflammatory cytokine output. Neurotoxicology. 2011;32(6):683–92. https://doi.org/10.1016/j.neuro.2011.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang D, Zhang J, Jiang W, Cao Z, Zhao F, Cai T, et al. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy. 2017;13(5):914–27. https://doi.org/10.1080/15548627.2017.1293766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Swarbrick JD, Shaw DJ, Chhabra S, Ghai R, Valkov E, Norwood SJ, et al. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins. PLoS One. 2011;6(5):e20420. https://doi.org/10.1371/journal.pone.0020420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. •• Sarkar S, Rokad D, Malovic E, Luo J, Harischandra DS, Jin H, et al. Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci Signal. 2019;12:563. https://doi.org/10.1126/scisignal.aat990012/563/eaat9900.

    Article  Google Scholar 

  76. Zheng Z, White C, Lee J, Peterson TS, Bush AI, Sun GY, et al. Altered microglial copper homeostasis in a mouse model of Alzheimer’s disease. J Neurochem. 2010;114(6):1630–8. https://doi.org/10.1111/j.1471-4159.2010.06888.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kitazawa M, Hsu HW, Medeiros R. Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta. Toxicol Sci. 2016;152(1):194–204. https://doi.org/10.1093/toxsci/kfw081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rossi-George A, Guo CJ. Copper disrupts S-nitrosothiol signaling in activated BV2 microglia. Neurochem Int. 2016;99:1–8. https://doi.org/10.1016/j.neuint.2016.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D. Effect of lead (Pb) on inflammatory processes in the brain. Int J Mol Sci. 2016;17(12). https://doi.org/10.3390/ijms17122140.

  80. Kasten-Jolly J, Heo Y, Lawrence DA. Central nervous system cytokine gene expression: modulation by lead. J Biochem Mol Toxicol. 2011;25(1):41–54. https://doi.org/10.1002/jbt.20358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Conti B, Park LC, Calingasan NY, Kim Y, Kim H, Bae Y, et al. Cultures of astrocytes and microglia express interleukin 18. Brain Res Mol Brain Res. 1999;67(1):46–52.

    Article  CAS  Google Scholar 

  82. Wheeler RD, Brough D, Le Feuvre RA, Takeda K, Iwakura Y, Luheshi GN, et al. Interleukin-18 induces expression and release of cytokines from murine glial cells: interactions with interleukin-1 beta. J Neurochem. 2003;85(6):1412–20.

    Article  CAS  Google Scholar 

  83. Cordova FM, Rodrigues AL, Giacomelli MB, Oliveira CS, Posser T, Dunkley PR, et al. Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res. 2004;998(1):65–72.

    Article  CAS  Google Scholar 

  84. Kasten-Jolly J, Pabello N, Bolivar VJ, Lawrence DA. Developmental lead effects on behavior and brain gene expression in male and female BALB/cAnNTac mice. Neurotoxicology. 2012;33(5):1005–20. https://doi.org/10.1016/j.neuro.2012.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Higashi Y, Aratake T, Shimizu S, Shimizu T, Nakamura K, Tsuda M, et al. Influence of extracellular zinc on M1 microglial activation. Sci Rep. 2017;7:43778. https://doi.org/10.1038/srep43778.

    Article  PubMed  PubMed Central  Google Scholar 

  86. •• Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 2004;18(13):1618–20. https://doi.org/10.1096/fj.04-1945fje.

    Article  CAS  PubMed  Google Scholar 

  87. Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect. 2011;119(8):1149–55. https://doi.org/10.1289/ehp.1002986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Levesque S, Taetzsch T, Lull ME, Johnson JA, McGraw C, Block ML. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function. J Neurochem. 2013;125(5):756–65. https://doi.org/10.1111/jnc.12231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cole TB, Coburn J, Dao K, Roque P, Chang YC, Kalia V, et al. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology. 2016;374:1–9. https://doi.org/10.1016/j.tox.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from Brigham and Women’s Hospital and the Colgate-Palmolive Postdoctoral Fellowship Award in In Vitro Toxicology (SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvarish Sarkar.

Ethics declarations

Conflict of Interest

The author declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mechanisms of Toxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S. Mechanism of Gene-Environment Interactions Driving Glial Activation in Parkinson’s Diseases. Curr Envir Health Rpt 8, 203–211 (2021). https://doi.org/10.1007/s40572-021-00320-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-021-00320-w

Keywords

Navigation