Skip to main content
Log in

Sex-Specific Epigenetics: Implications for Environmental Studies of Brain and Behavior

  • Synthetic Chemicals and Health (J Herbstman and T James-Todd, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review discusses the current state of knowledge on sex differences in the epigenetic regulation in the brain and highlights its relevance for the environmental studies of brain and behavior.

Recent Findings

Recent evidence shows that epigenetic mechanisms are involved in the control of brain sexual differentiation and in memory-enhancing effects of estradiol in females. In addition, several studies have implicated epigenetic dysregulation as an underlying mechanism for sex-specific neurobehavioral effects of environmental exposures.

Summary

The area of sex-specific neurepigenetics has a great potential to improve our understanding of brain function in health and disease. Future neuropigenetic studies will require the inclusion of males and females and would ideally account for the fluctuating hormonal status in females which is likely to affect the epigenome. The implementation of cutting-edge methods that include epigenomic characterization of specific cell types using latest next-generation sequencing approaches will further advance the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 2011;14(6):677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McEwen BS. Introduction: the end of sex as we once knew it. Physiol Behav. 2009;97(2):143–5.

    Article  CAS  PubMed  Google Scholar 

  3. Marrocco J, McEwen BS. Sex in the brain: hormones and sex differences. Dialogues Clin Neurosci. 2016;18(4):373–83.

    PubMed  PubMed Central  Google Scholar 

  4. McCarthy MM. Sex differences in the developing brain as a source of inherent risk. Dialogues Clin Neurosci. 2016;18(4):361–72.

    PubMed  PubMed Central  Google Scholar 

  5. Deecher D, Andree TH, Sloan D, Schechter LE. From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology. 2008;33(1):3–17.

    Article  PubMed  Google Scholar 

  6. Norman RE, Byambaa M, De R, Butchart A, Scott J, Vos T. The long-term health consequences of child physical abuse, emotional abuse, and neglect: a systematic review and meta-analysis. PLoS Med. 2012;9(11):e1001349.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49(12):1023–39.

    Article  CAS  PubMed  Google Scholar 

  8. Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull. 2008;34(6):1054–63.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol. 2011;31(3):363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bisson JI, Cosgrove S, Lewis C, Robert NP. Post-traumatic stress disorder. BMJ. 2015;351:h6161.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nestler EJ, Pena CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neurosci : Rev J Neurobiol Neurol Psychiatry. 2016;22(5):447–63.

    CAS  Google Scholar 

  14. Kundakovic M, Jaric I. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes. 2017;8(3):104.

  15. McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, et al. The epigenetics of sex differences in the brain. J Neurosci : Off J Soc Neurosci. 2009;29(41):12815–23.

    Article  CAS  Google Scholar 

  16. Menger Y, Bettscheider M, Murgatroyd C, Spengler D. Sex differences in brain epigenetics. Epigenomics. 2010;2(6):807–21.

    Article  CAS  PubMed  Google Scholar 

  17. Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, et al. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci U S A. 2013;110(24):9956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. •• Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A. 2015;112(22):6807–13. This study shows that prenatal exposure to a widely used plasticizer, bisphenol A, is associated with sex-specific epigenetic changes in rodents and humans. In rodents, prenatally induced epigenetic alterations are linked to changes in brain gene expression and behavior in the adulthood

    Article  CAS  PubMed  Google Scholar 

  19. Kundakovic M, Lim S, Gudsnuk K, Champagne FA. Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Frontiers in psychiatry. 2013;4:78.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kundakovic M, Champagne FA. Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology. 2015;40(1):141–53.

  21. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  22. Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16(4):258–64.

    Article  CAS  PubMed  Google Scholar 

  23. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Magnani L, Lupien M. Chromatin and epigenetic determinants of estrogen receptor alpha (ESR1) signaling. Mol Cell Endocrinol. 2014;382(1):633–41.

    Article  CAS  PubMed  Google Scholar 

  27. Lappalainen T, Greally JM. Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017;18(7):441–51.

    Article  CAS  PubMed  Google Scholar 

  28. Arnold AP, McCarthy MM. Sexual differentiation of the brain and behavior: a primer. In: Pfaff DW, Volkow ND, editors. Neuroscience in the 21st century: from basic to clinical. New York, NY: Springer New York; 2016. p. 2139–68.

  29. Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer J, et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci. 2006;9(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  30. Puts D, Motta-Mena NV. Is human brain masculinization estrogen receptor-mediated? Reply to Luoto and Rantala. Horm Behav. 2018;97:3–4.

    Article  CAS  Google Scholar 

  31. Nishino K, Hattori N, Tanaka S, Shiota K. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Biol Chem. 2004;279(21):22306–13.

    Article  CAS  PubMed  Google Scholar 

  32. Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science. 2013;341(6150):1106–9.

    Article  CAS  PubMed  Google Scholar 

  33. •• Nugent BM, Wright CL, Shetty AC, Hodes GE, Lenz KM, Mahurkar A, et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci. 2015;18(5):690–7. This study provides evidence that epigenetic mechanisms regulate sexual differentiation of the brain and behavior. It also opens a new possibility that brain feminization is an active process requiring DNA methylation-mediated suppression of brain masculinization

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murray EK, Hien A, de Vries GJ, Forger NG. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology. 2009;150(9):4241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuda KI, Mori H, Nugent BM, Pfaff DW, McCarthy MM, Kawata M. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology. 2011;152(7):2760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, et al. Epigenetic control of female puberty. Nat Neurosci. 2013;16(3):281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sundstrom Poromaa I, Gingnell M. Menstrual cycle influence on cognitive function and emotion processing—from a reproductive perspective. Front Neurosci. 2014;8:380.

    PubMed  PubMed Central  Google Scholar 

  38. Yonkers KA, O'Brien PS, Eriksson E. Premenstrual syndrome. Lancet. 2008;371(9619):1200–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Halbreich U, Borenstein J, Pearlstein T, Kahn LS. The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology. 2003;28(Suppl 3):1–23.

    CAS  Google Scholar 

  40. Koss WA, Frick KM. Sex differences in hippocampal function. J Neurosci Res. 2017;95(1–2):539–62.

    Article  CAS  PubMed  Google Scholar 

  41. Woolley CS, Gould E, Frankfurt M, McEwen BS. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci. 1990;10(12):4035–9.

  42. Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci. 1992;12(7):2549–54.

  43. Warren SG, Humphreys AG, Juraska JM, Greenough WT. LTP varies across the estrous cycle: enhanced synaptic plasticity in proestrus rats. Brain Res. 1995;703(1–2):26–30.

    Article  CAS  PubMed  Google Scholar 

  44. Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci. 1999;19(14):5792–801.

  45. Duclot F, Kabbaj M. The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1. Genome Biol. 2015;16(1):256.

    Article  PubMed  PubMed Central  Google Scholar 

  46. •• Zhao Z, Fan L, Frick KM. Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc Natl Acad Sci U S A. 2010;107(12):5605–10. This study shows that the epigenomes of adult hippocampal cells are responsive to estrogen and that epigenetic mechanisms are involved in memory-enhancing effects of estradiol

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao Z, Fan L, Fortress AM, Boulware MI, Frick KM. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition. J Neurosci. 2012;32(7):2344–51.

  48. Jaric I, Rocks D, Greally JM, Suzuki M, Kundakovic M. Dynamic changes in neuronal chromatin organization across the estrous cycle are linked to anxiety-related phenotypes. Program No. 74.09. 2017 Neuroscience Meeting Planner. Washington, DC; Society for Neuroscience, 2017. Online.

  49. Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, et al. Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ Health Perspect. 2012;120(8):1190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009;117(12):1945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28(36):9055–65.

  53. Kundakovic M. In utero bisphenol a exposure and epigenetic programming of neurobehavioral outcomes. In: Hollar D, editors. Epigenetics, the environment, and children’s health across lifespans: Springer; 2016. p. 67–92.

  54. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–62.

    Article  CAS  PubMed  Google Scholar 

  55. Kundakovic M, Champagne FA. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun. 2011;25(6):1084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patisaul HB, Fortino AE, Polston EK. Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol Teratol. 2006;28(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  57. Tetel MJ, Pfaff DW. Contributions of estrogen receptor-alpha and estrogen receptor-ss to the regulation of behavior. Biochim Biophys Acta. 2010;1800(10):1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boulle F, van den Hove DL, Jakob SB, Rutten BP, Hamon M, van Os J, et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry. 2012;17(6):584–96.

    Article  CAS  PubMed  Google Scholar 

  59. Blaze J, Scheuing L, Roth TL. Differential methylation of genes in the medial prefrontal cortex of developing and adult rats following exposure to maltreatment or nurturing care during infancy. Dev Neurosci. 2013;35(4):306–16.

    Article  CAS  PubMed  Google Scholar 

  60. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics. 2015;10(5):408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hodes GE, Pfau ML, Purushothaman I, Ahn HF, Golden SA, Christoffel DJ, et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J Neurosci. 2015;35(50):16362–76.

  62. Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol Psychiatry. 2017;81(2):162–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Kundakovic.

Ethics declarations

Conflict of Interest

Marija Kundakovic declares that there are no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Synthetic Chemicals and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundakovic, M. Sex-Specific Epigenetics: Implications for Environmental Studies of Brain and Behavior. Curr Envir Health Rpt 4, 385–391 (2017). https://doi.org/10.1007/s40572-017-0172-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0172-x

Keywords

Navigation